import streamlit as st import transformers from transformers import pipeline import PIL from PIL import Image pipe = pipeline("summarization", model="google/pegasus-xsum") agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection") objpipe = pipeline("zero-shot-object-detection", model="google/owlvit-base-patch32") st.title("NLP APP") option = st.sidebar.selectbox( "Choose a task", ("Summarization", "Age Detection", "Emotion Detection", "Image Generation") ) if option == "Summarization": st.title("Text Summarization") text = st.text_area("Enter text to summarize") if st.button("Summarize"): if text: st.write("Summary:", pipe(text)[0]["summary_text"]) else: st.write("Please enter text to summarize.") elif option == "Age Detection": st.title("Welcome to age detection") uploaded_files = st.file_uploader("Choose a image file",type="jpg") if uploaded_files is not None: Image=Image.open(uploaded_files) st.write(agepipe(Image)[0]["label"]) elif option == "Object Detection": st.title("Welcome to object detection") uploaded_files = st.file_uploader("Choose a image file",type="jpg") if uploaded_files is not None: Image=Image.open(uploaded_files) st.write(objpipe(Image)[0]["label"]) else: st.title("None")