import streamlit as st import transformers from transformers import pipeline import PIL from PIL import Image import requests from transformers import AutoProcessor, AutoModelForZeroShotImageClassification pipe = pipeline("summarization", model="google/pegasus-xsum") agepipe = pipeline("image-classification", model="dima806/facial_age_image_detection") imgpipe = pipeline("zero-shot-image-classification", model="google/siglip-so400m-patch14-384") st.title("NLP APP") option = st.sidebar.selectbox( "Choose a task", ("Summarization", "Age Detection", "Emotion Detection", "Image Classification") ) if option == "Summarization": st.title("Text Summarization") text = st.text_area("Enter text to summarize") if st.button("Summarize"): if text: st.write("Summary:", pipe(text)[0]["summary_text"]) else: st.write("Please enter text to summarize.") elif option == "Age Detection": st.title("Welcome to age detection") uploaded_files = st.file_uploader("Choose a image file",type="jpg") if uploaded_files is not None: Image=Image.open(uploaded_files) st.write(agepipe(Image)[0]["label"]) elif option == "Image Classification": st.title("Welcome to object detection") uploaded_files = st.file_uploader("Choose a image file",type=["jpg","jpeg"]) text=st.text_area("Enter possible class names(comma separated") candidate_lables=[t.strip() for t in text.split(',')] if uploaded_files is not None: Image=Image.open(uploaded_files) outputs = imgpipe(uploaded_files,candidate_lables) st.write(output["label"]) else: st.title("None")