import streamlit as st import transformers # Use a pipeline as a high-level helper from transformers import pipeline pipe = pipeline("summarization", model="google/pegasus-xsum") st.title("NLP APP") option = st.sidebar.selectbox( "Choose a task", ("Summarization", "Translation", "Emotion Detection", "Image Generation") ) if option == "Summarization": st.title("Text Summarization") text = st.text_area("Enter text to summarize") if st.button("Summarize"): if text: summary = summarizer(text)[0]["summary_text"] st.write("Summary:", summary) else: st.write("Please enter text to summarize.") else: st.title("None")