Spaces:
Runtime error
Runtime error
File size: 40,956 Bytes
9454822 5ac9259 9454822 5ac9259 9454822 5ac9259 9454822 5ac9259 9454822 5ac9259 9454822 5ac9259 9454822 5ac9259 9454822 5ac9259 9454822 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 |
import os
import json
import keras
from datasets import load_dataset
import tensorflow as tf
from huggingface_hub import login
import torch
from transformers import ( AutoTokenizer, AutoModelForCausalLM)
from sentence_transformers import SentenceTransformer
from typing import List, Dict, Union, Tuple
import faiss
import numpy as np
from datasets import Dataset
import torch.nn.functional as F
from torch.cuda.amp import autocast
import gc
from peft import ( LoraConfig, get_peft_model, prepare_model_for_kbit_training, TaskType, PeftModel)
from tqdm.auto import tqdm
from torch.utils.data import DataLoader
import logging
import wandb
from pathlib import Path
from typing import List, Dict, Union, Optional, Any
import torch.nn as nn
from dataclasses import dataclass, field
import time
import asyncio
import pytest
from unittest.mock import Mock, patch
from sklearn.metrics import classification_report, confusion_matrix
import gradio as gr
import matplotlib.pyplot as plt
from datetime import datetime
import requests
import pandas as pd
import seaborn as sns
import traceback
from matplotlib.gridspec import GridSpec
from google.colab import userdata
# Retrieve secrets securely from environment variables
kaggle_username = os.getenv("KAGGLE_USERNAME")
kaggle_key = os.getenv("KAGGLE_KEY")
hf_token = os.getenv("HF_TOKEN")
wandb_key = os.getenv("WANDB_API_KEY")
# Log in to Hugging Face
login(token=hf_token)
# Set up WandB if needed
wandb.login(key=wandb_key)
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
@dataclass
class MedicalConfig:
"""Enhanced configuration for medical chatbot"""
# LoRA parameters
LORA_WEIGHTS_PATH: str = "medical_lora_weights"
LORA_R: int = 16
LORA_ALPHA: int = 32
LORA_DROPOUT: float = 0.1
LORA_TARGET_MODULES: List[str] = field(default_factory=lambda: ["q_proj", "v_proj", "k_proj", "o_proj"])
# Training parameters
TRAINING_BATCH_SIZE: int = 4
LEARNING_RATE: float = 2e-5
NUM_EPOCHS: int = 3
MAX_LENGTH: int = 2048
INDEX_BATCH_SIZE: int = 32
# Medical specific parameters
EMERGENCY_KEYWORDS: List[str] = field(default_factory=lambda: [
'chest pain', 'breathing difficulty', 'stroke', 'heart attack', 'unconscious',
'severe bleeding', 'seizure', 'anaphylaxis', 'severe burn', 'choking',
'severe head injury', 'spinal injury', 'drowning', 'electric shock',
'severe allergic reaction', 'poisoning', 'overdose', 'self-harm',
'suicidal thoughts', 'severe trauma'
])
URGENT_KEYWORDS: List[str] = field(default_factory=lambda: [
'infection', 'high fever', 'severe pain', 'vomiting', 'dehydration',
'anxiety attack', 'panic attack', 'mental health crisis', 'broken bone',
'deep cut', 'asthma attack', 'migraine', 'severe rash', 'eye injury',
'dental emergency', 'pregnancy complications', 'severe back pain',
'severe abdominal pain', 'concussion', 'severe allergies'
])
# UK Healthcare specific
EMERGENCY_NUMBERS: List[str] = field(default_factory=lambda: ["999", "112", "111"])
GP_SERVICES: Dict[str, Dict[str, str]] = field(default_factory=lambda: {
"EMERGENCY": {
"name": "A&E",
"wait_time": "4 hours target",
"when_to_use": "Life-threatening emergencies"
},
"URGENT": {
"name": "Urgent Care Center",
"wait_time": "2-4 hours typically",
"when_to_use": "Urgent but not life-threatening conditions"
},
"NON_URGENT": {
"name": "GP Practice",
"wait_time": "Same day to 2 weeks",
"when_to_use": "Routine medical care"
}
})
# Cultural considerations
CULTURAL_CONTEXTS: List[Dict[str, str]] = field(default_factory=lambda: [
{
"group": "South Asian",
"considerations": [
"Different presentation of skin conditions",
"Higher diabetes risk",
"Cultural dietary practices",
"Language preferences"
]
},
{
"group": "African/Caribbean",
"considerations": [
"Different presentation of skin conditions",
"Higher hypertension risk",
"Specific hair/scalp conditions",
"Cultural health beliefs"
]
},
{
"group": "Middle Eastern",
"considerations": [
"Cultural modesty requirements",
"Ramadan considerations",
"Gender preferences for healthcare providers",
"Traditional medicine practices"
]
}
])
class GPUOptimizedRAG:
def __init__(
self,
model_path: str = "google/gemma-7b",
embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2",
config: MedicalConfig = MedicalConfig(),
use_cpu_fallback: bool = False
):
self.conversation_memory = {
'name': 'Pearly',
'role': 'GP Medical Assistant',
'style': 'professional, empathetic, and clear',
'system_prompt': None,
'past_interactions': []
}
"""Initialize RAG with enhanced configuration, LoRA support, and memory optimization"""
self.config = config
self.use_cpu_fallback = use_cpu_fallback
# Determine device with memory check
if torch.cuda.is_available() and not use_cpu_fallback:
try:
# Check available GPU memory
gpu_memory = torch.cuda.get_device_properties(0).total_memory
if gpu_memory < 8e9: # Less than 8GB
logger.warning("Limited GPU memory, falling back to CPU")
self.device = torch.device("cpu")
else:
self.device = torch.device("cuda")
except Exception as e:
logger.warning(f"GPU initialization error: {e}, falling back to CPU")
self.device = torch.device("cpu")
else:
self.device = torch.device("cpu")
# Add conversation memory for consistent persona
self.conversation_memory = {
'name': 'Pearly',
'role': 'GP Medical Assistant',
'style': 'professional, empathetic, and clear',
'past_interactions': []
}
# Add clinical quality metrics
self.clinical_metrics = {
'terminology_accuracy': 0.0,
'assessment_accuracy': 0.0,
'guideline_adherence': 0.0,
'symptom_recognition': 0.0
}
# Initialize models with memory optimization
try:
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForCausalLM.from_pretrained(
model_path,
torch_dtype=torch.float16 if self.device.type == "cuda" else torch.float32,
device_map="auto" if self.device.type == "cuda" else None,
low_cpu_mem_usage=True
)
# Apply LoRA configuration
self.setup_lora()
# Initialize embedding model with memory considerations
self.embedding_model = SentenceTransformer(embedding_model)
if self.device.type == "cuda":
self.embedding_model = self.embedding_model.half().to(self.device)
else:
self.embedding_model = self.embedding_model.to(self.device)
# Setup FAISS index with CPU fallback
self.embedding_dim = self.embedding_model.get_sentence_embedding_dimension()
if self.device.type == "cuda" and not use_cpu_fallback:
try:
self.index = faiss.IndexFlatIP(self.embedding_dim)
res = faiss.StandardGpuResources()
# Limit temp memory for GPU index
res.setTempMemory(64 * 1024 * 1024) # 64MB temp memory
self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
except Exception as e:
logger.warning(f"GPU FAISS initialization failed: {e}, using CPU index")
self.index = faiss.IndexFlatIP(self.embedding_dim)
else:
self.index = faiss.IndexFlatIP(self.embedding_dim)
logger.info(f"RAG system initialized successfully on {self.device}")
except Exception as e:
logger.error(f"Error initializing RAG system: {e}")
raise
def setup_lora(self):
"""Configure and apply LoRA to the model with memory optimization"""
try:
lora_config = LoraConfig(
r=self.config.LORA_R,
lora_alpha=self.config.LORA_ALPHA,
target_modules=self.config.LORA_TARGET_MODULES,
lora_dropout=self.config.LORA_DROPOUT,
bias="none",
task_type=TaskType.CAUSAL_LM
)
self.model = get_peft_model(self.model, lora_config)
logger.info("LoRA configuration applied successfully")
except Exception as e:
logger.error(f"Error setting up LoRA: {e}")
raise
def evaluate_clinical_quality(self, response: str, expected_elements: List[str]) -> Dict[str, float]:
"""Add clinical quality evaluation matching test requirements"""
quality_metrics = {
'terminology_accuracy': self._evaluate_terminology(response, expected_elements),
'assessment_accuracy': self._evaluate_assessment(response),
'guideline_adherence': self._evaluate_guidelines(response),
'symptom_recognition': self._evaluate_symptoms(response, expected_elements)
}
return quality_metrics
def prepare_documents(self, documents: List[Dict]):
"""Enhanced document preparation with improved batching and memory management"""
self.documents = documents
embeddings = []
try:
for i in tqdm(range(0, len(documents), self.config.INDEX_BATCH_SIZE),
desc="Processing documents"):
batch = documents[i:i + self.config.INDEX_BATCH_SIZE]
texts = [doc['text'] for doc in batch]
with torch.amp.autocast(device_type='cuda'):
batch_embeddings = self.embedding_model.encode(
texts,
convert_to_tensor=True,
show_progress_bar=False,
batch_size=8
)
embeddings.append(batch_embeddings.cpu().numpy())
all_embeddings = np.vstack(embeddings)
self.index.add(all_embeddings)
logger.info(f"Indexed {len(documents)} documents successfully")
except Exception as e:
logger.error(f"Error preparing documents: {e}")
raise
def assess_urgency(self, symptoms: str) -> Dict[str, Any]:
"""Enhanced symptom assessment with detailed analysis"""
symptoms_lower = symptoms.lower()
# Initialize response
assessment = {
'level': 'NON-URGENT',
'reasons': [],
'recommendations': [],
'follow_up_needed': False
}
# Check emergency keywords
emergency_matches = [kw for kw in self.config.EMERGENCY_KEYWORDS
if kw in symptoms_lower]
if emergency_matches:
assessment.update({
'level': 'EMERGENCY',
'reasons': emergency_matches,
'recommendations': [
'Call 999 immediately',
'Do not move if spinal injury suspected',
'Stay on the line for guidance'
],
'follow_up_needed': True
})
return assessment
# Check urgent keywords
urgent_matches = [kw for kw in self.config.URGENT_KEYWORDS
if kw in symptoms_lower]
if urgent_matches:
assessment.update({
'level': 'URGENT',
'reasons': urgent_matches,
'recommendations': [
'Visit urgent care center',
'Book emergency GP appointment',
'Monitor symptoms closely'
],
'follow_up_needed': True
})
return assessment
# Non-urgent default
assessment.update({
'recommendations': [
'Book routine GP appointment',
'Monitor symptoms',
'Try self-care measures'
],
'follow_up_needed': False
})
return assessment
def generate_cultural_considerations(self, symptoms: str) -> List[str]:
"""Generate culturally-aware medical considerations"""
considerations = []
symptoms_lower = symptoms.lower()
for context in self.config.CULTURAL_CONTEXTS:
relevant_considerations = [
cons for cons in context['considerations']
if any(keyword in symptoms_lower for keyword in cons.lower().split())
]
if relevant_considerations:
considerations.extend([
f"{context['group']}: {consideration}"
for consideration in relevant_considerations
])
return considerations if considerations else ["No specific cultural considerations identified"]
def get_booking_template(self, urgency_level: str) -> str:
"""Get appropriate booking template based on urgency level"""
service_info = self.config.GP_SERVICES[urgency_level]
templates = {
"EMERGENCY": f"""
🚨 EMERGENCY SERVICES REQUIRED 🚨
Service: {service_info['name']}
Target Wait Time: {service_info['wait_time']}
When to Use: {service_info['when_to_use']}
IMMEDIATE ACTIONS:
1. 🚑 Call 999 (or 112)
2. 🏥 Nearest A&E: [Location Placeholder]
3. 🚨 Stay on line for guidance
Type '999' to initiate emergency call
""",
"URGENT": f"""
⚡ URGENT CARE NEEDED ⚡
Service: {service_info['name']}
Expected Wait: {service_info['wait_time']}
When to Use: {service_info['when_to_use']}
OPTIONS:
1. 🏥 Find nearest urgent care
2. 📅 Book urgent GP slot
3. 🔍 Locate walk-in clinic
Reply with option number (1-3)
""",
"NON_URGENT": f"""
📋 ROUTINE CARE BOOKING 📋
Service: {service_info['name']}
Typical Wait: {service_info['wait_time']}
When to Use: {service_info['when_to_use']}
OPTIONS:
1. 📅 Schedule GP visit
2. 👨⚕️ Find local GP
3. ℹ️ Self-care advice
Reply with option number (1-3)
"""
}
return templates.get(urgency_level, templates["NON_URGENT"])
def generate_response(self, query: str, chat_history: List[tuple] = None) -> Dict[str, Any]:
"""Generate response with enhanced conversational context"""
try:
# Placeholder for response generation logic
urgency_assessment = {'level': 'NORMAL'} # Placeholder urgency assessment
response_text = "This is a placeholder response."
# Example cultural considerations
cultural_considerations = ["Consider patient background"]
return {
'response': response_text,
'urgency_assessment': urgency_assessment,
'cultural_considerations': cultural_considerations
}
except Exception as e:
logger.error(f"Error generating response: {e}")
return {
'response': "I apologize, but I encountered an error. If this is an emergency, please call 999 immediately.",
'urgency_assessment': {'level': 'UNKNOWN'},
'cultural_considerations': []
}
def prepare_documents(self, documents):
"""Prepare and index documents for RAG system"""
pass # Placeholder for document preparation logic
def retrieve(self, query: str, k: int = 5) -> List[Dict]:
"""Retrieve relevant documents"""
try:
return [] # Placeholder for document retrieval
except Exception as e:
logger.error(f"Error in retrieval: {e}")
return []
def generate_report(self, results: Dict) -> Dict:
"""Generate a simple summary report of the test results."""
total_cases = sum(cat['total'] for cat in results.values())
total_correct = sum(cat['correct'] for cat in results.values())
return {
'timestamp': datetime.now().isoformat(),
'triage_performance': {
'emergency_accuracy': results['emergency']['correct'] / results['emergency']['total'],
'urgent_accuracy': results['urgent']['correct'] / results['urgent']['total'],
'non_urgent_accuracy': results['non_urgent']['correct'] / results['non_urgent']['total'],
'overall_accuracy': total_correct / total_cases
}
}
def enhance_response_generation(self):
"""Add test-aligned response enhancement"""
self.response_enhancers = {
'demographic_sensitivity': self._enhance_demographic_sensitivity,
'cultural_competency': self._enhance_cultural_competency,
'clinical_quality': self._enhance_clinical_quality,
'follow_up_generation': self._enhance_follow_up
}
def _enhance_demographic_sensitivity(self, response: str, demographic: str) -> str:
"""Add demographic-specific enhancements matching test requirements"""
demographic_patterns = {
'pediatric': ['age-appropriate', 'child-friendly', 'developmental'],
'elderly': ['mobility', 'cognitive', 'fall risk'],
'pregnant': ['trimester', 'fetal', 'pregnancy-safe'],
'chronic_condition': ['management', 'monitoring', 'ongoing care']
}
return response # Placeholder implementation
def process_appointment_booking(message, patient_info):
"""Process appointment booking queries"""
return "I can help you book an appointment. Please provide further details."
def create_gradio_interface(rag_system: GPUOptimizedRAG):
"""Create enhanced Gradio interface with appointment booking capabilities"""
SYSTEM_MESSAGE = "You are Pearly, a friendly medical triaging Chatbot."
def process_chat_response(response_data: Dict[str, Any], message: str, history: List[tuple]) -> str:
"""Format chat response based on context, handle appointments, and maintain persona"""
try:
if not history or message.lower().startswith(("hi", "hello", "hey", "good")):
return "Hi! I'm Pearly, your medical triaging assistant. I'm here to help assess your symptoms and provide guidance. How may I assist you today?"
urgency_level = response_data['urgency_assessment']['level']
response_text = response_data['response']
if urgency_level == "EMERGENCY":
return f"🚨 EMERGENCY ALERT 🚨\n\n{response_text}\n\nWould you like me to help connect you to emergency services?"
elif urgency_level == "URGENT":
return f"⚠️ URGENT CARE NEEDED ⚠️\n\n{response_text}\n\nWould you like help finding your nearest urgent care center?"
else:
return f"{response_text}\n\nWould you like help booking a GP appointment or finding more NHS resources?"
except Exception as e:
logger.error(f"Error processing chat response: {e}")
return (
"I'm Pearly, and I apologize for the technical difficulty. For your safety:\n\n"
"- Call 999 for emergencies\n"
"- Call 111 for urgent medical advice\n"
"- Visit NHS 111 online for non-urgent concerns\n\n"
"Would you like to try asking your question again?"
)
def chat(message: str, history: List[tuple]) -> tuple[str, List[tuple]]:
"""Enhanced chat function with better error handling and context awareness"""
try:
response_data = rag_system.generate_response(message, history)
response = process_chat_response(response_data, message, history)
history.append((message, response))
return history
except Exception as e:
logger.error(f"Error in chat: {e}")
emergency_response = (
"I apologize for the technical difficulty. For your safety:\n\n"
"- Call 999 for emergencies\n"
"- Call 111 for urgent medical advice\n"
"- Visit NHS 111 online for non-urgent concerns\n\n"
"Would you like to try asking your question again?"
)
history.append((message, emergency_response))
return history
# Define interface for the chatbot
with gr.Blocks() as interface:
gr.HTML("<h1>Pearly Medical Assistant</h1><p>Hi! I'm Pearly, your GP medical assistant.</p>")
chatbot = gr.Chatbot(value=[(None, "Hi! I'm Pearly, your GP medical assistant. How can I help you today?")])
msg = gr.Textbox(label="Your Message")
submit = gr.Button("Send")
submit.click(chat, inputs=[msg, chatbot], outputs=chatbot)
return interface
def prepare_medical_documents():
"""Prepare medical knowledge base documents with enhanced conversation flow"""
try:
logger.info("Loading medical and persona datasets...")
datasets = {
"persona": load_dataset("AlekseyKorshuk/persona-chat", split="train[:500]"),
"medqa": load_dataset("medalpaca/medical_meadow_medqa", split="train[:500]"),
"meddia": load_dataset("wasiqnauman/medical-diagnosis-synthetic", split="train[:500]")
}
documents = []
# Process Persona dataset for enhanced conversational style
logger.info("Processing persona dataset...")
for item in datasets["persona"]:
if isinstance(item.get('personality'), list):
personality = " ".join(item['personality'])
documents.append({
'text': f"""
Conversation Style Guide:
Personality: {personality}
Role: Pearly - Medical Assistant
Core Traits: Professional, empathetic, clear
Key Behaviors:
- Always introduce as Pearly
- Show empathy for symptoms
- Ask relevant follow-up questions
- Offer practical assistance
- Maintain professional tone while being approachable
""",
'type': 'persona'
})
# Process conversation examples with enhanced structure
if isinstance(item.get('utterances'), list):
for utterance in item['utterances']:
if isinstance(utterance, dict) and 'history' in utterance:
conversation = ' '.join(utterance['history'])
documents.append({
'text': f"""
Medical Consultation Pattern:
Conversation: {conversation}
Key Elements:
- Show understanding of symptoms
- Ask clarifying questions
- Provide clear guidance
- Offer next steps
- Check if assistance needed
""",
'type': 'conversation_pattern'
})
# Process MedQA dataset with enhanced medical context
logger.info("Processing medical QA dataset...")
for item in datasets["medqa"]:
if 'input' in item and 'output' in item:
input_text = item['input']
if input_text.startswith('Q:'):
input_text = input_text[2:]
documents.append({
'text': f"""
Medical Knowledge Base:
Question: {input_text}
Answer: {item['output']}
Application:
- Use information to inform recommendations
- Adapt to patient's situation
- Maintain clinical accuracy
- Explain in clear terms
""",
'type': 'medical_qa'
})
# Process diagnosis dataset with structured guidance
logger.info("Processing diagnosis dataset...")
for item in datasets["meddia"]:
if 'input' in item and 'output' in item:
documents.append({
'text': f"""
Clinical Assessment Framework:
Symptoms: {item['input']}
Assessment and Plan: {item['output']}
Response Structure:
1. Acknowledge symptoms
2. Ask about severity and duration
3. Inquire about related symptoms
4. Provide clear recommendations
5. Offer assistance with next steps
""",
'type': 'diagnosis_guidance'
})
# Add enhanced conversation templates
conversation_templates = [
{
'text': """
Consultation Framework:
1. Initial Response:
- Acknowledge the concern
- Show empathy
- Ask about duration/severity
2. Follow-up Questions:
- Ask specific, relevant questions
- Clarify symptoms
- Check for related issues
3. Assessment:
- Summarize findings
- Explain reasoning
- State level of concern
4. Recommendations:
- Provide clear guidance
- List specific actions
- Offer assistance
5. Next Steps:
- Suggest appropriate care level
- Offer to help with appointments
- Provide relevant resources
6. Safety Checks:
- Verify understanding
- Confirm action plan
- Ensure patient comfort
Response Patterns:
Emergency:
"I understand you're experiencing [symptom]. This requires immediate attention..."
Urgent:
"I'm concerned about [symptom]. To better assess the urgency..."
Non-urgent:
"I hear you about [symptom]. Let's understand this better..."
Follow-ups:
"Would you like help with [specific assistance]?"
"Shall I help you [book/find/connect]?"
Guidance Structure:
1. Acknowledge
2. Assess
3. Advise
4. Assist
5. Arrange follow-up
""",
'type': 'conversation_framework'
}
]
documents.extend(conversation_templates)
# Add your existing GP templates
# Define GP templates inside the function
GP_templates = [
{
'text': """
Role: GP Medical Assistant
Context: Emergency situation - Chest Pain
Style: Calm, clear, and authoritative
Conversation Pattern:
Patient Input: Chest pain symptoms
Response Framework:
1. Initial acknowledgment
2. Immediate triage questions:
- Duration of pain
- Pain characteristics
- Associated symptoms
3. Emergency guidance
4. Clear action steps
Example Flow:
Patient: I'm having chest pain
Pearly: I understand you're experiencing chest pain. This requires immediate attention. How long have you been experiencing this pain?
Patient: About 30 minutes now
Pearly: Thank you for letting me know. Is the pain sharp or dull, and where exactly is it located? Also, are you experiencing any other symptoms like shortness of breath or sweating?
Patient: It's sharp and in the center of my chest. Yes, I'm sweating a lot
Pearly: Given your symptoms, this could be a serious cardiac event requiring immediate emergency care.
IMMEDIATE ACTIONS:
1. Call 999 immediately - I can help you do this
2. Sit down and try to stay calm
3. If available and you're not allergic, take one adult aspirin (300mg)
4. Loosen any tight clothing
5. Keep the line open - I'll stay with you until help arrives
Would you like me to connect you to emergency services now?
""",
'type': 'GP_template'
},
{
'text': """
Role: GP Medical Assistant
Context: Non-emergency consultation - Persistent Cough
Style: Empathetic and thorough
Conversation Pattern:
Patient Input: Cough symptoms
Response Framework:
1. Show empathy
2. Gather specific details:
- Type of cough
- Duration
- Associated symptoms
3. Risk assessment
4. Clear recommendations
Example Flow:
Patient: I've had a cough for 5 days now
Pearly: I'm sorry to hear you've been unwell. To better understand your condition, is it a dry cough or are you producing any phlegm?
Patient: It's mostly dry but sometimes I cough up clear phlegm
Pearly: Thank you for that detail. Have you experienced any fever, and are you having any difficulty breathing?
Patient: No fever but I feel a bit short of breath sometimes
Pearly: I understand. A few more important questions:
1. Have you been exposed to anyone with COVID-19 or other respiratory infections?
2. Do you have any underlying health conditions?
3. Are your symptoms worse at any particular time of day?
Would you like help booking an appointment with your GP?
""",
'type': 'GP_template'
},
{
'text': """
Role: GP Medical Assistant
Context: Mental Health Support
Style: Empathetic, patient, and supportive
Conversation Pattern:
Patient Input: Mental health concerns
Response Framework:
1. Validate feelings
2. Gentle exploration:
- Duration
- Impact on daily life
- Support systems
3. Clear support options
4. Immediate resources
Example Flow:
Patient: I've been feeling really anxious and can't sleep
Pearly: I hear you, and I want you to know it's brave to speak up about this. How long have you been experiencing these feelings?
Patient: About a month now, getting worse
Pearly: Thank you for sharing that. To better understand your situation:
1. Are there any specific triggers you've noticed?
2. How is this affecting your daily activities?
3. Have you had any previous mental health support?
Would you like information about immediate support services or help booking a GP appointment?
""",
'type': 'GP_template'
}
]
# Add all templates to documents
documents.extend(GP_templates)
logger.info(f"Prepared {len(documents)} documents including:")
logger.info(f"- {len([d for d in documents if d['type'] == 'persona'])} persona guides")
logger.info(f"- {len([d for d in documents if d['type'] == 'conversation_pattern'])} conversation patterns")
logger.info(f"- {len([d for d in documents if d['type'] == 'medical_qa'])} medical QA pairs")
logger.info(f"- {len([d for d in documents if d['type'] == 'diagnosis_guidance'])} diagnosis guidelines")
logger.info(f"- {len([d for d in documents if d['type'] == 'conversation_framework'])} conversation frameworks")
logger.info(f"- {len([d for d in documents if d['type'] == 'GP_template'])} GP templates")
return documents
except Exception as e:
logger.error(f"Error preparing medical documents: {e}")
# Print sample data for debugging
for dataset_name, dataset in datasets.items():
try:
sample = dataset[0]
logger.error(f"\nSample from {dataset_name}:")
logger.error(f"Keys: {list(sample.keys())}")
logger.error(f"Sample content: {str(sample)[:500]}")
except Exception as debug_e:
logger.error(f"Error inspecting {dataset_name}: {debug_e}")
raise
def generate_response(self, query: str, chat_history: List[tuple] = None) -> Dict[str, Any]:
"""Generate response with enhanced conversational context and persona"""
try:
# Update conversation memory
if chat_history:
self.conversation_memory['past_interactions'] = chat_history[-3:]
# Retrieve relevant documents with boosted weights for persona matches
retrieved_docs = self.retrieve(query, k=7)
# Separate documents by type
medical_docs = [doc for doc in retrieved_docs if doc['document']['type'] in ['medical_qa', 'diagnosis']]
persona_docs = [doc for doc in retrieved_docs if doc['document']['type'] in ['persona', 'conversation', 'GP_template']]
# Build context with weighted emphasis on different document types
medical_context = " ".join([doc['document']['text'] for doc in medical_docs])
persona_context = " ".join([doc['document']['text'] for doc in persona_docs])
# Assess urgency and get considerations
urgency_assessment = self.assess_urgency(query)
cultural_considerations = self.generate_cultural_considerations(query)
# Build conversation history context
history_context = ""
if chat_history:
history_context = "\n".join([f"Human: {h}\nPearly: {a}" for h, a in chat_history[-3:]])
# Add persona reminder
persona_reminder = f"""
I am {self.conversation_memory['name']}, a {self.conversation_memory['role']}.
My communication style is {self.conversation_memory['style']}.
"""
# Create enhanced prompt with persona integration
prompt = f"""Context:
Medical Information: {medical_context}
{persona_reminder}
Previous Interactions:
{history_context}
Current Query: {query}
Maintain my identity as {self.conversation_memory['name']}, the {self.conversation_memory['role']},
providing clear, professional guidance following NHS protocols.
Urgency Level: {urgency_assessment['level']}
Cultural Considerations: {', '.join(cultural_considerations)}
Respond in a clear, caring manner, always referring to myself as {self.conversation_memory['name']}.
Response:"""
# Generate response
inputs = self.tokenizer(
prompt,
return_tensors="pt",
max_length=self.config.MAX_LENGTH,
truncation=True
).to(self.device)
with torch.amp.autocast(device_type='cuda'):
outputs = self.model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
top_p=0.9,
temperature=0.7,
num_return_sequences=1,
pad_token_id=self.tokenizer.eos_token_id
)
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
response = response.split("Response:")[-1].strip()
# Add booking template for emergency/urgent cases
if urgency_assessment['level'] in ["EMERGENCY", "URGENT"]:
booking_template = self.get_booking_template(urgency_assessment['level'])
response = f"{response}\n\n{booking_template}"
return {
'response': response,
'urgency_assessment': urgency_assessment,
'cultural_considerations': cultural_considerations
}
except Exception as e:
logger.error(f"Error generating response: {e}")
return {
'response': "I apologize, but I encountered an error. If this is an emergency, please call 999 immediately.",
'urgency_assessment': {'level': 'UNKNOWN'},
'cultural_considerations': []
}
def check_urgency_accuracy(self, predicted: str, expected: str) -> float:
"""Check if urgency level matches expected"""
return 1.0 if predicted == expected else 0.0
def check_action_accuracy(self, response: str, expected_actions: List[str]) -> float:
"""Check if recommended actions match expected"""
if not expected_actions:
return 1.0
found_actions = sum(1 for action in expected_actions
if action.lower() in response.lower())
return found_actions / len(expected_actions)
def assess_conversation_quality(self, response: str) -> float:
"""Assess conversation quality metrics"""
metrics = {
'empathy': any(word in response.lower()
for word in ['understand', 'hear you', 'sorry']),
'clarity': len(response.split('.')) <= 5, # Check for concise sentences
'follow_up': '?' in response, # Check for follow-up questions
'structure': any(word in response.lower()
for word in ['first', 'then', 'next', 'finally'])
}
return sum(metrics.values()) / len(metrics)
def check_cultural_sensitivity(self, response_data: Dict, context: str) -> float:
"""Check cultural sensitivity of response"""
if not context:
return 1.0
cultural_considerations = response_data.get('cultural_considerations', [])
return 1.0 if any(context.lower() in cons.lower()
for cons in cultural_considerations) else 0.0
def setup_wandb(config: MedicalConfig):
"""Setup Weights & Biases tracking"""
try:
wandb.init(
project="medical-chatbot",
config={
"learning_rate": config.LEARNING_RATE,
"epochs": config.NUM_EPOCHS,
"batch_size": config.TRAINING_BATCH_SIZE,
"lora_r": config.LORA_R,
"lora_alpha": config.LORA_ALPHA
}
)
logger.info("Weights & Biases initialized successfully")
except Exception as e:
logger.warning(f"Failed to initialize Weights & Biases: {e}")
logger.warning("Continuing without wandb tracking")
if __name__ == "__main__":
try:
# Initialize configuration
config = MedicalConfig()
# Setup wandb tracking
setup_wandb(config)
# Initialize RAG system
logger.info("Initializing RAG system...")
rag_system = GPUOptimizedRAG(config=config)
# Prepare and index documents
logger.info("Preparing medical knowledge base...")
medical_documents = prepare_medical_documents()
rag_system.prepare_documents(medical_documents)
# Create and launch Gradio interface
interface = create_gradio_interface(rag_system)
if interface is None:
raise ValueError("Failed to create Gradio interface - interface object is None")
# Launch the interface
interface.launch(server_name="0.0.0.0", server_port=7860, share=True)
except Exception as e:
logger.error(f"Application startup error: {e}")
raise
|