Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,1200 +1,149 @@
|
|
1 |
-
#
|
2 |
import os
|
3 |
import logging
|
4 |
import torch
|
5 |
-
from typing import Dict, List, Any
|
6 |
import gradio as gr
|
7 |
-
from
|
8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
-
import faiss
|
11 |
-
import numpy as np
|
12 |
-
from tqdm import tqdm
|
13 |
-
from datetime import datetime
|
14 |
-
from dataclasses import dataclass, field
|
15 |
-
from dotenv import load_dotenv
|
16 |
-
import wandb
|
17 |
-
from peft import get_peft_model, LoraConfig, TaskType, prepare_model_for_kbit_training
|
18 |
-
import bitsandbytes as bnb
|
19 |
-
from accelerate import infer_auto_device_map, init_empty_weights
|
20 |
-
from transformers import BitsAndBytesConfig
|
21 |
-
from datasets import load_dataset
|
22 |
-
import time
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
load_dotenv()
|
27 |
-
|
28 |
-
# Set up logging
|
29 |
-
logging.basicConfig(
|
30 |
-
level=logging.INFO,
|
31 |
-
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
32 |
-
)
|
33 |
logger = logging.getLogger(__name__)
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
@dataclass
|
48 |
-
class MedicalConfig:
|
49 |
-
"""Enhanced configuration for medical chatbot"""
|
50 |
-
# LoRA parameters
|
51 |
-
LORA_WEIGHTS_PATH: str = "medical_lora_weights"
|
52 |
-
LORA_R: int = 16
|
53 |
-
LORA_ALPHA: int = 32
|
54 |
-
LORA_DROPOUT: float = 0.1
|
55 |
-
LORA_TARGET_MODULES: List[str] = field(default_factory=lambda: ["q_proj", "v_proj", "k_proj", "o_proj"])
|
56 |
-
|
57 |
-
# Training parameters
|
58 |
-
TRAINING_BATCH_SIZE: int = 4
|
59 |
-
LEARNING_RATE: float = 2e-5
|
60 |
-
NUM_EPOCHS: int = 3
|
61 |
-
MAX_LENGTH: int = 2048
|
62 |
-
INDEX_BATCH_SIZE: int = 32
|
63 |
-
|
64 |
-
# Medical specific parameters
|
65 |
-
EMERGENCY_KEYWORDS: List[str] = field(default_factory=lambda: [
|
66 |
-
'chest pain', 'breathing difficulty', 'stroke', 'heart attack', 'unconscious',
|
67 |
-
'severe bleeding', 'seizure', 'anaphylaxis', 'severe burn', 'choking',
|
68 |
-
'severe head injury', 'spinal injury', 'drowning', 'electric shock',
|
69 |
-
'severe allergic reaction', 'poisoning', 'overdose', 'self-harm',
|
70 |
-
'suicidal thoughts', 'severe trauma'
|
71 |
-
])
|
72 |
-
|
73 |
-
URGENT_KEYWORDS: List[str] = field(default_factory=lambda: [
|
74 |
-
'infection', 'high fever', 'severe pain', 'vomiting', 'dehydration',
|
75 |
-
'anxiety attack', 'panic attack', 'mental health crisis', 'broken bone',
|
76 |
-
'deep cut', 'asthma attack', 'migraine', 'severe rash', 'eye injury',
|
77 |
-
'dental emergency', 'pregnancy complications', 'severe back pain',
|
78 |
-
'severe abdominal pain', 'concussion', 'severe allergies'
|
79 |
-
])
|
80 |
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
"
|
87 |
-
|
88 |
-
|
89 |
-
"URGENT": {
|
90 |
-
"name": "Urgent Care Center",
|
91 |
-
"wait_time": "2-4 hours typically",
|
92 |
-
"when_to_use": "Urgent but not life-threatening conditions"
|
93 |
-
},
|
94 |
-
"NON_URGENT": {
|
95 |
-
"name": "GP Practice",
|
96 |
-
"wait_time": "Same day to 2 weeks",
|
97 |
-
"when_to_use": "Routine medical care"
|
98 |
-
}
|
99 |
-
})
|
100 |
|
101 |
-
# Cultural considerations
|
102 |
-
CULTURAL_CONTEXTS: List[Dict[str, str]] = field(default_factory=lambda: [
|
103 |
-
{
|
104 |
-
"group": "South Asian",
|
105 |
-
"considerations": [
|
106 |
-
"Different presentation of skin conditions",
|
107 |
-
"Higher diabetes risk",
|
108 |
-
"Cultural dietary practices",
|
109 |
-
"Language preferences"
|
110 |
-
]
|
111 |
-
},
|
112 |
-
{
|
113 |
-
"group": "African/Caribbean",
|
114 |
-
"considerations": [
|
115 |
-
"Different presentation of skin conditions",
|
116 |
-
"Higher hypertension risk",
|
117 |
-
"Specific hair/scalp conditions",
|
118 |
-
"Cultural health beliefs"
|
119 |
-
]
|
120 |
-
},
|
121 |
-
{
|
122 |
-
"group": "Middle Eastern",
|
123 |
-
"considerations": [
|
124 |
-
"Cultural modesty requirements",
|
125 |
-
"Ramadan considerations",
|
126 |
-
"Gender preferences for healthcare providers",
|
127 |
-
"Traditional medicine practices"
|
128 |
-
]
|
129 |
-
}
|
130 |
-
])
|
131 |
-
class GPUOptimizedRAG:
|
132 |
-
def __init__(
|
133 |
-
self,
|
134 |
-
model_path: str = "google/gemma-7b",
|
135 |
-
embedding_model: str = "sentence-transformers/all-MiniLM-L6-v2",
|
136 |
-
config: MedicalConfig = MedicalConfig(),
|
137 |
-
use_cpu_fallback: bool = False
|
138 |
-
):
|
139 |
-
"""Initialize RAG with T4 optimization"""
|
140 |
try:
|
141 |
-
#
|
142 |
-
self.conversation_memory = {
|
143 |
-
'name': 'Pearly',
|
144 |
-
'role': 'GP Medical Assistant',
|
145 |
-
'style': 'professional, empathetic, and clear',
|
146 |
-
'system_prompt': None,
|
147 |
-
'past_interactions': []
|
148 |
-
}
|
149 |
-
|
150 |
-
# Log GPU info
|
151 |
-
if torch.cuda.is_available():
|
152 |
-
logger.info(f"GPU: {torch.cuda.get_device_name(0)}")
|
153 |
-
logger.info(f"GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f}GB")
|
154 |
-
|
155 |
-
# Initialize tokenizer
|
156 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
157 |
-
|
158 |
trust_remote_code=True
|
159 |
)
|
160 |
-
logger.info("Tokenizer loaded successfully")
|
161 |
-
|
162 |
-
# Initialize model with T4 optimizations
|
163 |
-
self.model = AutoModelForCausalLM.from_pretrained(
|
164 |
-
model_path,
|
165 |
-
torch_dtype=torch.float16, # Use fp16 for memory efficiency
|
166 |
-
device_map="auto", # Let accelerate handle memory mapping
|
167 |
-
trust_remote_code=True,
|
168 |
-
max_memory={0: "14GB"}, # Reserve 14GB for model, leaving 2GB for other operations
|
169 |
-
load_in_8bit=True, # Use 8-bit quantization for additional memory savings
|
170 |
-
)
|
171 |
-
logger.info(f"Model loaded successfully on {self.model.device}")
|
172 |
-
|
173 |
-
# Set up device
|
174 |
-
self.device = torch.device("cuda")
|
175 |
-
self.use_cpu_fallback = use_cpu_fallback
|
176 |
-
|
177 |
-
# Initialize embedding model
|
178 |
-
self.embedding_model = SentenceTransformer(embedding_model)
|
179 |
-
self.embedding_model.to(self.device)
|
180 |
-
logger.info("Embedding model loaded successfully")
|
181 |
-
|
182 |
-
# Add clinical quality metrics
|
183 |
-
self.clinical_metrics = {
|
184 |
-
'terminology_accuracy': 0.0,
|
185 |
-
'assessment_accuracy': 0.0,
|
186 |
-
'guideline_adherence': 0.0,
|
187 |
-
'symptom_recognition': 0.0
|
188 |
-
}
|
189 |
-
|
190 |
-
# Initialize other components
|
191 |
-
self.config = config
|
192 |
|
193 |
-
#
|
194 |
-
self.
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
self.index = faiss.index_cpu_to_gpu(res, 0, self.index)
|
200 |
-
logger.info("FAISS GPU index initialized successfully")
|
201 |
-
except Exception as e:
|
202 |
-
logger.warning(f"GPU FAISS initialization failed: {e}, using CPU index")
|
203 |
-
self.index = faiss.IndexFlatIP(self.embedding_dim)
|
204 |
-
else:
|
205 |
-
self.index = faiss.IndexFlatIP(self.embedding_dim)
|
206 |
-
|
207 |
-
# Setup LoRA after model initialization
|
208 |
-
self.setup_lora()
|
209 |
-
|
210 |
-
except Exception as e:
|
211 |
-
logger.error(f"Error in initialization: {e}")
|
212 |
-
raise
|
213 |
-
|
214 |
-
# Add learning components
|
215 |
-
self.learning_buffer = []
|
216 |
-
self.feedback_history = []
|
217 |
-
self.learning_rate = 0.0001
|
218 |
-
self.min_feedback_threshold = 10
|
219 |
-
|
220 |
-
# Initialize learning storage
|
221 |
-
self.storage_path = os.path.join(os.getcwd(), "learning_data")
|
222 |
-
os.makedirs(self.storage_path, exist_ok=True)
|
223 |
-
|
224 |
-
def setup_lora(self):
|
225 |
-
"""Configure and apply LoRA with T4 optimization"""
|
226 |
-
try:
|
227 |
-
# Prepare model for k-bit training
|
228 |
-
model = prepare_model_for_kbit_training(self.model)
|
229 |
-
|
230 |
-
lora_config = LoraConfig(
|
231 |
-
r=self.config.LORA_R,
|
232 |
-
lora_alpha=self.config.LORA_ALPHA,
|
233 |
-
target_modules=self.config.LORA_TARGET_MODULES,
|
234 |
-
lora_dropout=self.config.LORA_DROPOUT,
|
235 |
-
bias="none",
|
236 |
-
task_type=TaskType.CAUSAL_LM,
|
237 |
-
inference_mode=False,
|
238 |
)
|
239 |
-
|
240 |
-
self.model = get_peft_model(model, lora_config)
|
241 |
-
logger.info("LoRA configuration applied successfully")
|
242 |
|
243 |
-
# Monitor memory after LoRA setup
|
244 |
-
if torch.cuda.is_available():
|
245 |
-
monitor_gpu_memory()
|
246 |
-
|
247 |
except Exception as e:
|
248 |
-
logger.error(f"Error
|
249 |
-
if torch.cuda.is_available():
|
250 |
-
torch.cuda.empty_cache()
|
251 |
raise
|
252 |
|
253 |
-
def
|
254 |
-
"""
|
255 |
-
|
256 |
-
'message': message,
|
257 |
-
'response': response,
|
258 |
-
'timestamp': datetime.now().isoformat(),
|
259 |
-
'feedback_pending': True
|
260 |
-
})
|
261 |
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
|
|
|
|
268 |
try:
|
269 |
-
|
270 |
-
self.feedback_history.append({
|
271 |
-
'message': message,
|
272 |
-
'response': response,
|
273 |
-
'feedback': feedback,
|
274 |
-
'timestamp': datetime.now().isoformat()
|
275 |
-
})
|
276 |
|
277 |
-
#
|
278 |
-
|
279 |
-
self._update_model()
|
280 |
-
|
281 |
-
except Exception as e:
|
282 |
-
logger.error(f"Error in feedback processing: {e}")
|
283 |
-
|
284 |
-
def _update_model(self):
|
285 |
-
"""Update model weights based on feedback"""
|
286 |
-
try:
|
287 |
-
positive_samples = [f for f in self.feedback_history if f['feedback'] > 0]
|
288 |
-
if len(positive_samples) >= self.min_feedback_threshold:
|
289 |
-
# Prepare training data
|
290 |
-
train_data = self._prepare_training_data(positive_samples)
|
291 |
-
|
292 |
-
# Update model weights
|
293 |
-
self._fine_tune_model(train_data)
|
294 |
-
|
295 |
-
# Clear history after successful update
|
296 |
-
self.feedback_history = []
|
297 |
-
logger.info("Model updated successfully")
|
298 |
-
|
299 |
-
except Exception as e:
|
300 |
-
logger.error(f"Error updating model: {e}")
|
301 |
|
302 |
-
|
303 |
-
"""Convert feedback samples to training data"""
|
304 |
-
return [
|
305 |
-
{
|
306 |
-
'input_ids': self.tokenizer(
|
307 |
-
s['message'],
|
308 |
-
max_length=self.config.MAX_LENGTH,
|
309 |
-
truncation=True,
|
310 |
-
return_tensors='pt'
|
311 |
-
).input_ids,
|
312 |
-
'labels': self.tokenizer(
|
313 |
-
s['response'],
|
314 |
-
max_length=self.config.MAX_LENGTH,
|
315 |
-
truncation=True,
|
316 |
-
return_tensors='pt'
|
317 |
-
).input_ids
|
318 |
-
}
|
319 |
-
for s in samples
|
320 |
-
]
|
321 |
-
|
322 |
-
def evaluate_clinical_quality(self, response: str, expected_elements: List[str]) -> Dict[str, float]:
|
323 |
-
"""Add clinical quality evaluation matching test requirements"""
|
324 |
-
quality_metrics = {
|
325 |
-
'terminology_accuracy': self._evaluate_terminology(response, expected_elements),
|
326 |
-
'assessment_accuracy': self._evaluate_assessment(response),
|
327 |
-
'guideline_adherence': self._evaluate_guidelines(response),
|
328 |
-
'symptom_recognition': self._evaluate_symptoms(response, expected_elements)
|
329 |
-
}
|
330 |
-
return quality_metrics
|
331 |
-
|
332 |
-
def assess_urgency(self, symptoms: str) -> Dict[str, Any]:
|
333 |
-
"""Enhanced symptom assessment with detailed analysis"""
|
334 |
-
symptoms_lower = symptoms.lower()
|
335 |
-
|
336 |
-
# Initialize response
|
337 |
-
assessment = {
|
338 |
-
'level': 'NON-URGENT',
|
339 |
-
'reasons': [],
|
340 |
-
'recommendations': [],
|
341 |
-
'follow_up_needed': False
|
342 |
-
}
|
343 |
-
|
344 |
-
# Check emergency keywords
|
345 |
-
emergency_matches = [kw for kw in self.config.EMERGENCY_KEYWORDS
|
346 |
-
if kw in symptoms_lower]
|
347 |
-
if emergency_matches:
|
348 |
-
assessment.update({
|
349 |
-
'level': 'EMERGENCY',
|
350 |
-
'reasons': emergency_matches,
|
351 |
-
'recommendations': [
|
352 |
-
'Call 999 immediately',
|
353 |
-
'Do not move if spinal injury suspected',
|
354 |
-
'Stay on the line for guidance'
|
355 |
-
],
|
356 |
-
'follow_up_needed': True
|
357 |
-
})
|
358 |
-
return assessment
|
359 |
-
|
360 |
-
# Check urgent keywords
|
361 |
-
urgent_matches = [kw for kw in self.config.URGENT_KEYWORDS
|
362 |
-
if kw in symptoms_lower]
|
363 |
-
if urgent_matches:
|
364 |
-
assessment.update({
|
365 |
-
'level': 'URGENT',
|
366 |
-
'reasons': urgent_matches,
|
367 |
-
'recommendations': [
|
368 |
-
'Visit urgent care center',
|
369 |
-
'Book emergency GP appointment',
|
370 |
-
'Monitor symptoms closely'
|
371 |
-
],
|
372 |
-
'follow_up_needed': True
|
373 |
-
})
|
374 |
-
return assessment
|
375 |
|
376 |
-
|
377 |
-
|
378 |
-
'recommendations': [
|
379 |
-
'Book routine GP appointment',
|
380 |
-
'Monitor symptoms',
|
381 |
-
'Try self-care measures'
|
382 |
-
],
|
383 |
-
'follow_up_needed': False
|
384 |
-
})
|
385 |
-
return assessment
|
386 |
|
387 |
-
|
388 |
-
|
389 |
-
self.documents = documents
|
390 |
-
embeddings = []
|
391 |
|
392 |
-
|
393 |
-
for i in tqdm(range(0, len(documents), self.config.INDEX_BATCH_SIZE),
|
394 |
-
desc="Processing documents"):
|
395 |
-
batch = documents[i:i + self.config.INDEX_BATCH_SIZE]
|
396 |
-
texts = [doc['text'] for doc in batch]
|
397 |
-
|
398 |
-
with torch.amp.autocast(device_type='cuda'):
|
399 |
-
batch_embeddings = self.embedding_model.encode(
|
400 |
-
texts,
|
401 |
-
convert_to_tensor=True,
|
402 |
-
show_progress_bar=False,
|
403 |
-
batch_size=8
|
404 |
-
)
|
405 |
-
|
406 |
-
embeddings.append(batch_embeddings.cpu().numpy())
|
407 |
|
408 |
-
|
409 |
-
self.index.add(all_embeddings)
|
410 |
-
logger.info(f"Indexed {len(documents)} documents successfully")
|
411 |
-
|
412 |
-
except Exception as e:
|
413 |
-
logger.error(f"Error preparing documents: {e}")
|
414 |
-
raise
|
415 |
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
query_embedding = self.embedding_model.encode(
|
442 |
-
query,
|
443 |
-
convert_to_tensor=True,
|
444 |
-
show_progress_bar=False
|
445 |
-
)
|
446 |
-
# Move to CPU for FAISS search
|
447 |
-
query_embedding = query_embedding.cpu().numpy().reshape(1, -1)
|
448 |
-
|
449 |
-
# Perform search
|
450 |
-
scores, indices = self.index.search(query_embedding, k)
|
451 |
-
|
452 |
-
# Filter and format results
|
453 |
-
results = [
|
454 |
-
{
|
455 |
-
'document': self.documents[idx],
|
456 |
-
'score': float(score),
|
457 |
-
'relevance_metrics': {
|
458 |
-
'semantic_similarity': float(score),
|
459 |
-
'keyword_match': self._calculate_keyword_match(query, self.documents[idx]['text'])
|
460 |
-
}
|
461 |
-
}
|
462 |
-
for score, idx in zip(scores[0], indices[0])
|
463 |
-
if score > 0.5 # Relevance threshold
|
464 |
-
]
|
465 |
-
|
466 |
-
# Log retrieval metrics
|
467 |
-
if results:
|
468 |
-
avg_score = np.mean([r['score'] for r in results])
|
469 |
-
logger.info(f"Retrieved {len(results)} documents with average score: {avg_score:.3f}")
|
470 |
-
|
471 |
-
return results
|
472 |
-
|
473 |
-
except Exception as e:
|
474 |
-
logger.error(f"Error in retrieval: {e}")
|
475 |
-
if torch.cuda.is_available():
|
476 |
-
torch.cuda.empty_cache()
|
477 |
-
return []
|
478 |
-
|
479 |
-
def _calculate_keyword_match(self, query: str, doc_text: str) -> float:
|
480 |
-
"""Calculate keyword match score between query and document"""
|
481 |
-
query_words = set(query.lower().split())
|
482 |
-
doc_words = set(doc_text.lower().split())
|
483 |
-
matches = query_words.intersection(doc_words)
|
484 |
-
return len(matches) / len(query_words) if query_words else 0.0
|
485 |
-
|
486 |
-
def generate_report(self, results: Dict) -> Dict:
|
487 |
-
"""Generate enhanced summary report with T4 metrics"""
|
488 |
-
try:
|
489 |
-
total_cases = sum(cat['total'] for cat in results.values())
|
490 |
-
total_correct = sum(cat['correct'] for cat in results.values())
|
491 |
-
|
492 |
-
# Basic performance metrics
|
493 |
-
performance_metrics = {
|
494 |
-
'timestamp': datetime.now().isoformat(),
|
495 |
-
'triage_performance': {
|
496 |
-
'emergency_accuracy': results['emergency']['correct'] / results['emergency']['total'],
|
497 |
-
'urgent_accuracy': results['urgent']['correct'] / results['urgent']['total'],
|
498 |
-
'non_urgent_accuracy': results['non_urgent']['correct'] / results['non_urgent']['total'],
|
499 |
-
'overall_accuracy': total_correct / total_cases
|
500 |
-
}
|
501 |
-
}
|
502 |
-
|
503 |
-
# Add document processing metrics if available
|
504 |
-
if hasattr(self, 'document_metrics'):
|
505 |
-
performance_metrics['document_processing'] = self.document_metrics
|
506 |
-
|
507 |
-
# Add GPU metrics if available
|
508 |
-
if torch.cuda.is_available():
|
509 |
-
gpu_metrics = {
|
510 |
-
'gpu_name': torch.cuda.get_device_name(0),
|
511 |
-
'gpu_memory_allocated': torch.cuda.memory_allocated() / 1024**2, # MB
|
512 |
-
'gpu_memory_cached': torch.cuda.memory_reserved() / 1024**2, # MB
|
513 |
-
}
|
514 |
-
performance_metrics['gpu_metrics'] = gpu_metrics
|
515 |
-
|
516 |
-
return performance_metrics
|
517 |
-
|
518 |
-
except Exception as e:
|
519 |
-
logger.error(f"Error generating report: {e}")
|
520 |
-
if torch.cuda.is_available():
|
521 |
-
torch.cuda.empty_cache()
|
522 |
-
return {
|
523 |
-
'timestamp': datetime.now().isoformat(),
|
524 |
-
'error': str(e)
|
525 |
-
}
|
526 |
-
|
527 |
-
def get_booking_template(self, urgency_level: str) -> str:
|
528 |
-
"""Get appropriate booking template based on urgency level"""
|
529 |
-
service_info = self.config.GP_SERVICES[urgency_level]
|
530 |
-
|
531 |
-
templates = {
|
532 |
-
"EMERGENCY": f"""
|
533 |
-
π¨ EMERGENCY SERVICES REQUIRED π¨
|
534 |
-
|
535 |
-
Service: {service_info['name']}
|
536 |
-
Target Wait Time: {service_info['wait_time']}
|
537 |
-
When to Use: {service_info['when_to_use']}
|
538 |
-
|
539 |
-
IMMEDIATE ACTIONS:
|
540 |
-
1. π Call 999 (or 112)
|
541 |
-
2. π₯ Nearest A&E: [Location Placeholder]
|
542 |
-
3. π¨ Stay on line for guidance
|
543 |
-
|
544 |
-
Type '999' to initiate emergency call
|
545 |
-
""",
|
546 |
-
"URGENT": f"""
|
547 |
-
β‘ URGENT CARE NEEDED β‘
|
548 |
-
|
549 |
-
Service: {service_info['name']}
|
550 |
-
Expected Wait: {service_info['wait_time']}
|
551 |
-
When to Use: {service_info['when_to_use']}
|
552 |
-
|
553 |
-
OPTIONS:
|
554 |
-
1. π₯ Find nearest urgent care
|
555 |
-
2. π
Book urgent GP slot
|
556 |
-
3. π Locate walk-in clinic
|
557 |
-
|
558 |
-
Reply with option number (1-3)
|
559 |
-
""",
|
560 |
-
"NON_URGENT": f"""
|
561 |
-
π ROUTINE CARE BOOKING π
|
562 |
-
|
563 |
-
Service: {service_info['name']}
|
564 |
-
Typical Wait: {service_info['wait_time']}
|
565 |
-
When to Use: {service_info['when_to_use']}
|
566 |
-
|
567 |
-
OPTIONS:
|
568 |
-
1. π
Schedule GP visit
|
569 |
-
2. π¨ββοΈ Find local GP
|
570 |
-
3. βΉοΈ Self-care advice
|
571 |
-
|
572 |
-
Reply with option number (1-3)
|
573 |
-
"""
|
574 |
-
}
|
575 |
-
|
576 |
-
return templates.get(urgency_level, templates["NON_URGENT"])
|
577 |
-
|
578 |
-
def generate_response(self, query: str, chat_history: List[tuple] = None) -> Dict[str, Any]:
|
579 |
-
"""Generate response with enhanced conversational context and T4 optimization"""
|
580 |
-
try:
|
581 |
-
# Update conversation memory
|
582 |
-
if chat_history:
|
583 |
-
self.conversation_memory['past_interactions'] = chat_history[-3:]
|
584 |
-
|
585 |
-
# Use mixed precision for T4
|
586 |
-
with torch.cuda.amp.autocast():
|
587 |
-
# Retrieve relevant documents with boosted weights for persona matches
|
588 |
-
retrieved_docs = self.retrieve(query, k=7)
|
589 |
-
|
590 |
-
# Separate documents by type
|
591 |
-
medical_docs = [doc for doc in retrieved_docs if doc['document']['type'] in ['medical_qa', 'diagnosis']]
|
592 |
-
persona_docs = [doc for doc in retrieved_docs if doc['document']['type'] in ['persona', 'conversation', 'GP_template']]
|
593 |
-
|
594 |
-
# Build context with weighted emphasis on different document types
|
595 |
-
medical_context = " ".join([doc['document']['text'] for doc in medical_docs])
|
596 |
-
persona_context = " ".join([doc['document']['text'] for doc in persona_docs])
|
597 |
-
|
598 |
-
# Assess urgency and get considerations
|
599 |
-
urgency_assessment = self.assess_urgency(query)
|
600 |
-
cultural_considerations = self.generate_cultural_considerations(query)
|
601 |
-
|
602 |
-
# Build conversation history context
|
603 |
-
history_context = ""
|
604 |
-
if chat_history:
|
605 |
-
history_context = "\n".join([f"Human: {h}\nPearly: {a}" for h, a in chat_history[-3:]])
|
606 |
-
|
607 |
-
# Add persona reminder
|
608 |
-
persona_reminder = f"""
|
609 |
-
I am {self.conversation_memory['name']}, a {self.conversation_memory['role']}.
|
610 |
-
My communication style is {self.conversation_memory['style']}.
|
611 |
-
"""
|
612 |
-
|
613 |
-
# Create enhanced prompt with persona integration
|
614 |
-
prompt = f"""Context:
|
615 |
-
Medical Information: {medical_context}
|
616 |
-
|
617 |
-
{persona_reminder}
|
618 |
-
|
619 |
-
Previous Interactions:
|
620 |
-
{history_context}
|
621 |
-
|
622 |
-
Current Query: {query}
|
623 |
-
|
624 |
-
Maintain my identity as {self.conversation_memory['name']}, the {self.conversation_memory['role']},
|
625 |
-
providing clear, professional guidance following NHS protocols.
|
626 |
-
Urgency Level: {urgency_assessment['level']}
|
627 |
-
Cultural Considerations: {', '.join(cultural_considerations)}
|
628 |
-
|
629 |
-
Respond in a clear, caring manner, always referring to myself as {self.conversation_memory['name']}.
|
630 |
-
|
631 |
-
Response:"""
|
632 |
-
|
633 |
-
# Generate response with T4 optimizations
|
634 |
-
inputs = self.tokenizer(
|
635 |
-
prompt,
|
636 |
-
return_tensors="pt",
|
637 |
-
max_length=self.config.MAX_LENGTH,
|
638 |
-
truncation=True
|
639 |
-
).to(self.device)
|
640 |
-
|
641 |
-
outputs = self.model.generate(
|
642 |
-
**inputs,
|
643 |
-
max_new_tokens=512,
|
644 |
-
do_sample=True,
|
645 |
-
top_p=0.9,
|
646 |
-
temperature=0.7,
|
647 |
-
num_return_sequences=1,
|
648 |
-
pad_token_id=self.tokenizer.eos_token_id,
|
649 |
-
use_cache=True, # Enable KV cache
|
650 |
-
low_cpu_mem_usage=True
|
651 |
-
)
|
652 |
-
|
653 |
-
# Clean up CUDA cache after generation
|
654 |
-
if torch.cuda.is_available():
|
655 |
-
torch.cuda.empty_cache()
|
656 |
-
|
657 |
-
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
658 |
-
response = response.split("Response:")[-1].strip()
|
659 |
-
|
660 |
-
# Add booking template for emergency/urgent cases
|
661 |
-
if urgency_assessment['level'] in ["EMERGENCY", "URGENT"]:
|
662 |
-
booking_template = self.get_booking_template(urgency_assessment['level'])
|
663 |
-
response = f"{response}\n\n{booking_template}"
|
664 |
-
|
665 |
-
return {
|
666 |
-
'response': response,
|
667 |
-
'urgency_assessment': urgency_assessment,
|
668 |
-
'cultural_considerations': cultural_considerations
|
669 |
-
}
|
670 |
-
|
671 |
except Exception as e:
|
672 |
logger.error(f"Error generating response: {e}")
|
673 |
-
|
674 |
-
torch.cuda.empty_cache() # Clean up on error
|
675 |
-
return {
|
676 |
-
'response': "I apologize, but I encountered an error. If this is an emergency, please call 999 immediately.",
|
677 |
-
'urgency_assessment': {'level': 'UNKNOWN'},
|
678 |
-
'cultural_considerations': []
|
679 |
-
}
|
680 |
-
|
681 |
-
|
682 |
-
|
683 |
-
def enhance_response_generation(self):
|
684 |
-
"""Add test-aligned response enhancement"""
|
685 |
-
self.response_enhancers = {
|
686 |
-
'demographic_sensitivity': self._enhance_demographic_sensitivity,
|
687 |
-
'cultural_competency': self._enhance_cultural_competency,
|
688 |
-
'clinical_quality': self._enhance_clinical_quality,
|
689 |
-
'follow_up_generation': self._enhance_follow_up
|
690 |
-
}
|
691 |
-
|
692 |
-
def _enhance_demographic_sensitivity(self, response: str, demographic: str) -> str:
|
693 |
-
"""Add demographic-specific enhancements matching test requirements"""
|
694 |
-
demographic_patterns = {
|
695 |
-
'pediatric': ['age-appropriate', 'child-friendly', 'developmental'],
|
696 |
-
'elderly': ['mobility', 'cognitive', 'fall risk'],
|
697 |
-
'pregnant': ['trimester', 'fetal', 'pregnancy-safe'],
|
698 |
-
'chronic_condition': ['management', 'monitoring', 'ongoing care']
|
699 |
-
}
|
700 |
-
return response # Placeholder implementation
|
701 |
-
|
702 |
-
def process_appointment_booking(self, message, patient_info):
|
703 |
-
"""Process appointment booking queries"""
|
704 |
-
return "I can help you book an appointment. Please provide further details."
|
705 |
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
def check_action_accuracy(self, response: str, expected_actions: List[str]) -> float:
|
711 |
-
"""Check if recommended actions match expected"""
|
712 |
-
if not expected_actions:
|
713 |
-
return 1.0
|
714 |
-
found_actions = sum(1 for action in expected_actions
|
715 |
-
if action.lower() in response.lower())
|
716 |
-
return found_actions / len(expected_actions)
|
717 |
-
|
718 |
-
def assess_conversation_quality(self, response: str) -> float:
|
719 |
-
"""Assess conversation quality metrics"""
|
720 |
-
metrics = {
|
721 |
-
'empathy': any(word in response.lower()
|
722 |
-
for word in ['understand', 'hear you', 'sorry']),
|
723 |
-
'clarity': len(response.split('.')) <= 5, # Check for concise sentences
|
724 |
-
'follow_up': '?' in response, # Check for follow-up questions
|
725 |
-
'structure': any(word in response.lower()
|
726 |
-
for word in ['first', 'then', 'next', 'finally'])
|
727 |
-
}
|
728 |
-
return sum(metrics.values()) / len(metrics)
|
729 |
-
|
730 |
-
def check_cultural_sensitivity(self, response_data: Dict, context: str) -> float:
|
731 |
-
"""Check cultural sensitivity of response"""
|
732 |
-
if not context:
|
733 |
-
return 1.0
|
734 |
|
735 |
-
|
736 |
-
return 1.0 if any(context.lower() in cons.lower()
|
737 |
-
for cons in cultural_considerations) else 0.0
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
def monitor_gpu_memory():
|
743 |
-
"""Monitor GPU memory usage"""
|
744 |
-
if torch.cuda.is_available():
|
745 |
-
device = torch.cuda.current_device()
|
746 |
-
allocated = torch.cuda.memory_allocated(device) / 1024**2
|
747 |
-
reserved = torch.cuda.memory_reserved(device) / 1024**2
|
748 |
-
logger.info(f"GPU Memory: Allocated: {allocated:.2f}MB, Reserved: {reserved:.2f}MB")
|
749 |
-
|
750 |
-
def prepare_medical_documents():
|
751 |
-
"""Prepare medical knowledge base documents with enhanced conversation flow"""
|
752 |
-
try:
|
753 |
-
logger.info("Loading medical and persona datasets...")
|
754 |
-
datasets = {
|
755 |
-
"persona": load_dataset("AlekseyKorshuk/persona-chat", split="train[:500]"),
|
756 |
-
"medqa": load_dataset("medalpaca/medical_meadow_medqa", split="train[:500]"),
|
757 |
-
"meddia": load_dataset("wasiqnauman/medical-diagnosis-synthetic", split="train[:500]")
|
758 |
-
}
|
759 |
-
|
760 |
-
documents = []
|
761 |
-
|
762 |
-
# Process Persona dataset for enhanced conversational style
|
763 |
-
logger.info("Processing persona dataset...")
|
764 |
-
for item in datasets["persona"]:
|
765 |
-
if isinstance(item.get('personality'), list):
|
766 |
-
personality = " ".join(item['personality'])
|
767 |
-
documents.append({
|
768 |
-
'text': f"""
|
769 |
-
Conversation Style Guide:
|
770 |
-
Personality: {personality}
|
771 |
-
Role: Pearly - Medical Assistant
|
772 |
-
Core Traits: Professional, empathetic, clear
|
773 |
-
Key Behaviors:
|
774 |
-
- Always introduce as Pearly
|
775 |
-
- Show empathy for symptoms
|
776 |
-
- Ask relevant follow-up questions
|
777 |
-
- Offer practical assistance
|
778 |
-
- Maintain professional tone while being approachable
|
779 |
-
""",
|
780 |
-
'type': 'persona'
|
781 |
-
})
|
782 |
-
|
783 |
-
# Process conversation examples with enhanced structure
|
784 |
-
if isinstance(item.get('utterances'), list):
|
785 |
-
for utterance in item['utterances']:
|
786 |
-
if isinstance(utterance, dict) and 'history' in utterance:
|
787 |
-
conversation = ' '.join(utterance['history'])
|
788 |
-
documents.append({
|
789 |
-
'text': f"""
|
790 |
-
Medical Consultation Pattern:
|
791 |
-
Conversation: {conversation}
|
792 |
-
Key Elements:
|
793 |
-
- Show understanding of symptoms
|
794 |
-
- Ask clarifying questions
|
795 |
-
- Provide clear guidance
|
796 |
-
- Offer next steps
|
797 |
-
- Check if assistance needed
|
798 |
-
""",
|
799 |
-
'type': 'conversation_pattern'
|
800 |
-
})
|
801 |
-
|
802 |
-
# Process MedQA dataset with enhanced medical context
|
803 |
-
logger.info("Processing medical QA dataset...")
|
804 |
-
for item in datasets["medqa"]:
|
805 |
-
if 'input' in item and 'output' in item:
|
806 |
-
input_text = item['input']
|
807 |
-
if input_text.startswith('Q:'):
|
808 |
-
input_text = input_text[2:]
|
809 |
-
|
810 |
-
documents.append({
|
811 |
-
'text': f"""
|
812 |
-
Medical Knowledge Base:
|
813 |
-
Question: {input_text}
|
814 |
-
Answer: {item['output']}
|
815 |
-
Application:
|
816 |
-
- Use information to inform recommendations
|
817 |
-
- Adapt to patient's situation
|
818 |
-
- Maintain clinical accuracy
|
819 |
-
- Explain in clear terms
|
820 |
-
""",
|
821 |
-
'type': 'medical_qa'
|
822 |
-
})
|
823 |
-
|
824 |
-
# Process diagnosis dataset with structured guidance
|
825 |
-
logger.info("Processing diagnosis dataset...")
|
826 |
-
for item in datasets["meddia"]:
|
827 |
-
if 'input' in item and 'output' in item:
|
828 |
-
documents.append({
|
829 |
-
'text': f"""
|
830 |
-
Clinical Assessment Framework:
|
831 |
-
Symptoms: {item['input']}
|
832 |
-
Assessment and Plan: {item['output']}
|
833 |
-
Response Structure:
|
834 |
-
1. Acknowledge symptoms
|
835 |
-
2. Ask about severity and duration
|
836 |
-
3. Inquire about related symptoms
|
837 |
-
4. Provide clear recommendations
|
838 |
-
5. Offer assistance with next steps
|
839 |
-
""",
|
840 |
-
'type': 'diagnosis_guidance'
|
841 |
-
})
|
842 |
-
|
843 |
-
# Add enhanced conversation templates
|
844 |
-
conversation_templates = [
|
845 |
-
{
|
846 |
-
'text': """
|
847 |
-
Consultation Framework:
|
848 |
-
1. Initial Response:
|
849 |
-
- Acknowledge the concern
|
850 |
-
- Show empathy
|
851 |
-
- Ask about duration/severity
|
852 |
-
|
853 |
-
2. Follow-up Questions:
|
854 |
-
- Ask specific, relevant questions
|
855 |
-
- Clarify symptoms
|
856 |
-
- Check for related issues
|
857 |
-
|
858 |
-
3. Assessment:
|
859 |
-
- Summarize findings
|
860 |
-
- Explain reasoning
|
861 |
-
- State level of concern
|
862 |
-
|
863 |
-
4. Recommendations:
|
864 |
-
- Provide clear guidance
|
865 |
-
- List specific actions
|
866 |
-
- Offer assistance
|
867 |
-
|
868 |
-
5. Next Steps:
|
869 |
-
- Suggest appropriate care level
|
870 |
-
- Offer to help with appointments
|
871 |
-
- Provide relevant resources
|
872 |
-
|
873 |
-
6. Safety Checks:
|
874 |
-
- Verify understanding
|
875 |
-
- Confirm action plan
|
876 |
-
- Ensure patient comfort
|
877 |
-
|
878 |
-
Response Patterns:
|
879 |
-
Emergency:
|
880 |
-
"I understand you're experiencing [symptom]. This requires immediate attention..."
|
881 |
-
|
882 |
-
Urgent:
|
883 |
-
"I'm concerned about [symptom]. To better assess the urgency..."
|
884 |
-
|
885 |
-
Non-urgent:
|
886 |
-
"I hear you about [symptom]. Let's understand this better..."
|
887 |
-
|
888 |
-
Follow-ups:
|
889 |
-
"Would you like help with [specific assistance]?"
|
890 |
-
"Shall I help you [book/find/connect]?"
|
891 |
-
|
892 |
-
Guidance Structure:
|
893 |
-
1. Acknowledge
|
894 |
-
2. Assess
|
895 |
-
3. Advise
|
896 |
-
4. Assist
|
897 |
-
5. Arrange follow-up
|
898 |
-
""",
|
899 |
-
'type': 'conversation_framework'
|
900 |
-
}
|
901 |
-
]
|
902 |
-
documents.extend(conversation_templates)
|
903 |
-
|
904 |
-
# Add your existing GP templates
|
905 |
-
# Define GP templates inside the function
|
906 |
-
GP_templates = [
|
907 |
-
{
|
908 |
-
'text': """
|
909 |
-
Role: GP Medical Assistant
|
910 |
-
Context: Emergency situation - Chest Pain
|
911 |
-
Style: Calm, clear, and authoritative
|
912 |
-
Conversation Pattern:
|
913 |
-
|
914 |
-
Patient Input: Chest pain symptoms
|
915 |
-
Response Framework:
|
916 |
-
1. Initial acknowledgment
|
917 |
-
2. Immediate triage questions:
|
918 |
-
- Duration of pain
|
919 |
-
- Pain characteristics
|
920 |
-
- Associated symptoms
|
921 |
-
3. Emergency guidance
|
922 |
-
4. Clear action steps
|
923 |
-
|
924 |
-
Example Flow:
|
925 |
-
Patient: I'm having chest pain
|
926 |
-
Pearly: I understand you're experiencing chest pain. This requires immediate attention. How long have you been experiencing this pain?
|
927 |
-
|
928 |
-
Patient: About 30 minutes now
|
929 |
-
Pearly: Thank you for letting me know. Is the pain sharp or dull, and where exactly is it located? Also, are you experiencing any other symptoms like shortness of breath or sweating?
|
930 |
-
|
931 |
-
Patient: It's sharp and in the center of my chest. Yes, I'm sweating a lot
|
932 |
-
Pearly: Given your symptoms, this could be a serious cardiac event requiring immediate emergency care.
|
933 |
-
|
934 |
-
IMMEDIATE ACTIONS:
|
935 |
-
1. Call 999 immediately - I can help you do this
|
936 |
-
2. Sit down and try to stay calm
|
937 |
-
3. If available and you're not allergic, take one adult aspirin (300mg)
|
938 |
-
4. Loosen any tight clothing
|
939 |
-
5. Keep the line open - I'll stay with you until help arrives
|
940 |
-
|
941 |
-
Would you like me to connect you to emergency services now?
|
942 |
-
""",
|
943 |
-
'type': 'GP_template'
|
944 |
-
},
|
945 |
-
{
|
946 |
-
'text': """
|
947 |
-
Role: GP Medical Assistant
|
948 |
-
Context: Non-emergency consultation - Persistent Cough
|
949 |
-
Style: Empathetic and thorough
|
950 |
-
Conversation Pattern:
|
951 |
-
|
952 |
-
Patient Input: Cough symptoms
|
953 |
-
Response Framework:
|
954 |
-
1. Show empathy
|
955 |
-
2. Gather specific details:
|
956 |
-
- Type of cough
|
957 |
-
- Duration
|
958 |
-
- Associated symptoms
|
959 |
-
3. Risk assessment
|
960 |
-
4. Clear recommendations
|
961 |
-
|
962 |
-
Example Flow:
|
963 |
-
Patient: I've had a cough for 5 days now
|
964 |
-
Pearly: I'm sorry to hear you've been unwell. To better understand your condition, is it a dry cough or are you producing any phlegm?
|
965 |
-
|
966 |
-
Patient: It's mostly dry but sometimes I cough up clear phlegm
|
967 |
-
Pearly: Thank you for that detail. Have you experienced any fever, and are you having any difficulty breathing?
|
968 |
-
|
969 |
-
Patient: No fever but I feel a bit short of breath sometimes
|
970 |
-
Pearly: I understand. A few more important questions:
|
971 |
-
1. Have you been exposed to anyone with COVID-19 or other respiratory infections?
|
972 |
-
2. Do you have any underlying health conditions?
|
973 |
-
3. Are your symptoms worse at any particular time of day?
|
974 |
-
|
975 |
-
Would you like help booking an appointment with your GP?
|
976 |
-
""",
|
977 |
-
'type': 'GP_template'
|
978 |
-
},
|
979 |
-
{
|
980 |
-
'text': """
|
981 |
-
Role: GP Medical Assistant
|
982 |
-
Context: Mental Health Support
|
983 |
-
Style: Empathetic, patient, and supportive
|
984 |
-
Conversation Pattern:
|
985 |
-
|
986 |
-
Patient Input: Mental health concerns
|
987 |
-
Response Framework:
|
988 |
-
1. Validate feelings
|
989 |
-
2. Gentle exploration:
|
990 |
-
- Duration
|
991 |
-
- Impact on daily life
|
992 |
-
- Support systems
|
993 |
-
3. Clear support options
|
994 |
-
4. Immediate resources
|
995 |
-
|
996 |
-
Example Flow:
|
997 |
-
Patient: I've been feeling really anxious and can't sleep
|
998 |
-
Pearly: I hear you, and I want you to know it's brave to speak up about this. How long have you been experiencing these feelings?
|
999 |
-
|
1000 |
-
Patient: About a month now, getting worse
|
1001 |
-
Pearly: Thank you for sharing that. To better understand your situation:
|
1002 |
-
1. Are there any specific triggers you've noticed?
|
1003 |
-
2. How is this affecting your daily activities?
|
1004 |
-
3. Have you had any previous mental health support?
|
1005 |
-
|
1006 |
-
Would you like information about immediate support services or help booking a GP appointment?
|
1007 |
-
""",
|
1008 |
-
'type': 'GP_template'
|
1009 |
-
}
|
1010 |
-
]
|
1011 |
-
|
1012 |
-
# Add all templates to documents
|
1013 |
-
documents.extend(GP_templates)
|
1014 |
-
|
1015 |
-
logger.info(f"Prepared {len(documents)} documents including:")
|
1016 |
-
logger.info(f"- {len([d for d in documents if d['type'] == 'persona'])} persona guides")
|
1017 |
-
logger.info(f"- {len([d for d in documents if d['type'] == 'conversation_pattern'])} conversation patterns")
|
1018 |
-
logger.info(f"- {len([d for d in documents if d['type'] == 'medical_qa'])} medical QA pairs")
|
1019 |
-
logger.info(f"- {len([d for d in documents if d['type'] == 'diagnosis_guidance'])} diagnosis guidelines")
|
1020 |
-
logger.info(f"- {len([d for d in documents if d['type'] == 'conversation_framework'])} conversation frameworks")
|
1021 |
-
logger.info(f"- {len([d for d in documents if d['type'] == 'GP_template'])} GP templates")
|
1022 |
-
|
1023 |
-
return documents
|
1024 |
-
|
1025 |
-
except Exception as e:
|
1026 |
-
logger.error(f"Error preparing medical documents: {e}")
|
1027 |
-
# Print sample data for debugging
|
1028 |
-
for dataset_name, dataset in datasets.items():
|
1029 |
-
try:
|
1030 |
-
sample = dataset[0]
|
1031 |
-
logger.error(f"\nSample from {dataset_name}:")
|
1032 |
-
logger.error(f"Keys: {list(sample.keys())}")
|
1033 |
-
logger.error(f"Sample content: {str(sample)[:500]}")
|
1034 |
-
except Exception as debug_e:
|
1035 |
-
logger.error(f"Error inspecting {dataset_name}: {debug_e}")
|
1036 |
-
raise
|
1037 |
-
|
1038 |
-
|
1039 |
-
def setup_wandb(config: MedicalConfig):
|
1040 |
-
"""Setup Weights & Biases tracking"""
|
1041 |
try:
|
1042 |
-
|
1043 |
-
|
1044 |
-
config={
|
1045 |
-
"learning_rate": config.LEARNING_RATE,
|
1046 |
-
"epochs": config.NUM_EPOCHS,
|
1047 |
-
"batch_size": config.TRAINING_BATCH_SIZE,
|
1048 |
-
"lora_r": config.LORA_R,
|
1049 |
-
"lora_alpha": config.LORA_ALPHA
|
1050 |
-
}
|
1051 |
-
)
|
1052 |
-
logger.info("Weights & Biases initialized successfully")
|
1053 |
except Exception as e:
|
1054 |
-
logger.
|
1055 |
-
|
1056 |
-
|
1057 |
-
|
1058 |
-
|
1059 |
-
|
1060 |
-
|
1061 |
-
|
1062 |
-
if not history or message.lower().startswith(("hi", "hello", "hey", "good")):
|
1063 |
-
return "Hi! I'm Pearly, your medical triaging assistant. I'm here to help assess your symptoms and provide guidance. How may I assist you today?"
|
1064 |
-
|
1065 |
-
urgency_level = response_data['urgency_assessment']['level']
|
1066 |
-
response_text = response_data['response']
|
1067 |
-
|
1068 |
-
if urgency_level == "EMERGENCY":
|
1069 |
-
return f"π¨ EMERGENCY ALERT π¨\n\n{response_text}\n\nWould you like me to help connect you to emergency services?"
|
1070 |
-
elif urgency_level == "URGENT":
|
1071 |
-
return f"β οΈ URGENT CARE NEEDED β οΈ\n\n{response_text}\n\nWould you like help finding your nearest urgent care center?"
|
1072 |
-
else:
|
1073 |
-
return f"{response_text}\n\nWould you like help booking a GP appointment or finding more NHS resources?"
|
1074 |
-
except Exception as e:
|
1075 |
-
logger.error(f"Error processing chat response: {e}")
|
1076 |
-
return (
|
1077 |
-
"I'm Pearly, and I apologize for the technical difficulty. For your safety:\n\n"
|
1078 |
-
"- Call 999 for emergencies\n"
|
1079 |
-
"- Call 111 for urgent medical advice\n"
|
1080 |
-
"- Visit NHS 111 online for non-urgent concerns\n\n"
|
1081 |
-
"Would you like to try asking your question again?"
|
1082 |
-
)
|
1083 |
-
|
1084 |
-
# Global chat function
|
1085 |
-
def chat(message: str, history: List[tuple]) -> List[tuple]:
|
1086 |
-
"""Enhanced chat function for Hugging Face Space"""
|
1087 |
-
try:
|
1088 |
-
if torch.cuda.is_available():
|
1089 |
-
torch.cuda.empty_cache()
|
1090 |
-
|
1091 |
-
# Convert history format for RAG system
|
1092 |
-
rag_history = [(h["content"], a["content"])
|
1093 |
-
for h, a in zip(history[::2], history[1::2])] if history else []
|
1094 |
-
|
1095 |
-
|
1096 |
-
response_data = rag_system.generate_response(message, history)
|
1097 |
-
response = process_chat_response(response_data, message, history)
|
1098 |
-
|
1099 |
-
if not history:
|
1100 |
-
history = []
|
1101 |
-
# Convert to message format
|
1102 |
-
history.append({"role": "user", "content": message})
|
1103 |
-
history.append({"role": "assistant", "content": response})
|
1104 |
-
|
1105 |
-
# Store interaction for learning
|
1106 |
-
rag_system.store_interaction(message, response)
|
1107 |
-
|
1108 |
-
return history
|
1109 |
|
1110 |
-
|
1111 |
-
|
1112 |
-
|
1113 |
-
|
1114 |
-
# Initialize RAG system globally
|
1115 |
-
rag_system = GPUOptimizedRAG(
|
1116 |
-
config=MedicalConfig(),
|
1117 |
-
use_cpu_fallback=False,
|
1118 |
-
model_path="google/gemma-7b",
|
1119 |
-
embedding_model="sentence-transformers/all-MiniLM-L6-v2"
|
1120 |
-
)
|
1121 |
-
|
1122 |
-
# Initialize medical documents globally
|
1123 |
-
medical_documents = prepare_medical_documents()
|
1124 |
-
rag_system.prepare_documents(medical_documents)
|
1125 |
-
|
1126 |
-
def handle_feedback(feedback: str, message: str, response: str) -> None:
|
1127 |
-
"""Process user feedback for adaptive learning"""
|
1128 |
-
try:
|
1129 |
-
feedback_value = 1 if feedback == "π Helpful" else -1
|
1130 |
-
rag_system.update_from_feedback(message, response, feedback_value)
|
1131 |
-
except Exception as e:
|
1132 |
-
logger.error(f"Error processing feedback: {e}")
|
1133 |
-
|
1134 |
-
# Define the Gradio interface
|
1135 |
-
title = """
|
1136 |
-
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
|
1137 |
-
<h1>Pearly Medical Assistant</h1>
|
1138 |
-
<p>Hi! I'm Pearly, your GP medical assistant. I can help assess your symptoms,
|
1139 |
-
provide medical guidance and assist with finding appropriate care.</p>
|
1140 |
-
<p style="color: #666; font-size: 0.9em;">For emergencies, always call 999</p>
|
1141 |
-
</div>
|
1142 |
-
"""
|
1143 |
-
|
1144 |
-
def create_demo() -> gr.Blocks:
|
1145 |
-
"""Create and return the Gradio demo interface"""
|
1146 |
-
def on_chat(message, history):
|
1147 |
-
"""Chat handler with feedback visibility"""
|
1148 |
-
result = chat(message, history)
|
1149 |
-
feedback.update(visible=True)
|
1150 |
-
return result, gr.update(value="")
|
1151 |
-
|
1152 |
-
with gr.Blocks(css="footer {display: none}") as demo:
|
1153 |
-
gr.HTML(title)
|
1154 |
-
chatbot = gr.Chatbot(
|
1155 |
-
value=[{"role": "assistant", "content": "Hi! I'm Pearly, your GP medical assistant. How can I help you today?"}],
|
1156 |
-
height=600,
|
1157 |
-
type="messages",
|
1158 |
-
label="Medical Consultation"
|
1159 |
-
)
|
1160 |
-
msg = gr.Textbox(
|
1161 |
-
label="Your Message",
|
1162 |
-
placeholder="Describe your symptoms or ask a medical question...",
|
1163 |
-
lines=2
|
1164 |
-
)
|
1165 |
-
submit = gr.Button("Send", variant="primary")
|
1166 |
-
clear = gr.Button("Clear Conversation")
|
1167 |
-
|
1168 |
-
# Feedback mechanism
|
1169 |
-
with gr.Row():
|
1170 |
-
feedback = gr.Radio(
|
1171 |
-
choices=["π Helpful", "π Not Helpful"],
|
1172 |
-
label="Was this response helpful?",
|
1173 |
-
visible=False
|
1174 |
-
)
|
1175 |
-
|
1176 |
-
# Set up event handlers
|
1177 |
-
msg.submit(on_chat, [msg, chatbot], [chatbot, msg])
|
1178 |
-
submit.click(on_chat, [msg, chatbot], [chatbot, msg])
|
1179 |
-
clear.click(lambda: None, None, chatbot, queue=False)
|
1180 |
|
1181 |
-
|
1182 |
-
|
1183 |
-
|
1184 |
-
|
1185 |
-
|
1186 |
-
|
1187 |
-
|
1188 |
-
|
1189 |
-
|
1190 |
-
<p>This is a medical triage assistant. For emergencies, always call 999.</p>
|
1191 |
-
<p>Your privacy is important. Conversations are not stored permanently.</p>
|
1192 |
-
</div>
|
1193 |
-
""")
|
1194 |
|
1195 |
return demo
|
1196 |
-
|
1197 |
-
|
1198 |
if __name__ == "__main__":
|
1199 |
demo = create_demo()
|
1200 |
demo.launch()
|
|
|
1 |
+
# app.py
|
2 |
import os
|
3 |
import logging
|
4 |
import torch
|
|
|
5 |
import gradio as gr
|
6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
|
|
7 |
from sentence_transformers import SentenceTransformer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Setup logging
|
10 |
+
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
logger = logging.getLogger(__name__)
|
12 |
|
13 |
+
class MedicalTriageBot:
|
14 |
+
def __init__(self):
|
15 |
+
self.setup_models()
|
16 |
+
self.emergency_keywords = [
|
17 |
+
'chest pain', 'breathing', 'stroke', 'heart attack',
|
18 |
+
'unconscious', 'bleeding', 'seizure'
|
19 |
+
]
|
20 |
+
self.urgent_keywords = [
|
21 |
+
'infection', 'fever', 'severe pain', 'vomiting',
|
22 |
+
'mental health', 'broken'
|
23 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
def setup_models(self):
|
26 |
+
"""Initialize models with optimal T4 settings"""
|
27 |
+
# Configure quantization
|
28 |
+
bnb_config = BitsAndBytesConfig(
|
29 |
+
load_in_4bit=True,
|
30 |
+
bnb_4bit_quant_type="nf4",
|
31 |
+
bnb_4bit_compute_dtype=torch.float16
|
32 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
try:
|
35 |
+
# Load tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
37 |
+
"google/gemma-7b",
|
38 |
trust_remote_code=True
|
39 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
+
# Load model with quantization
|
42 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
43 |
+
"google/gemma-7b",
|
44 |
+
quantization_config=bnb_config,
|
45 |
+
device_map="auto",
|
46 |
+
trust_remote_code=True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
|
|
|
|
|
|
48 |
|
|
|
|
|
|
|
|
|
49 |
except Exception as e:
|
50 |
+
logger.error(f"Error loading models: {e}")
|
|
|
|
|
51 |
raise
|
52 |
|
53 |
+
def assess_urgency(self, message):
|
54 |
+
"""Determine message urgency"""
|
55 |
+
message_lower = message.lower()
|
|
|
|
|
|
|
|
|
|
|
56 |
|
57 |
+
if any(keyword in message_lower for keyword in self.emergency_keywords):
|
58 |
+
return "EMERGENCY"
|
59 |
+
elif any(keyword in message_lower for keyword in self.urgent_keywords):
|
60 |
+
return "URGENT"
|
61 |
+
return "NON_URGENT"
|
62 |
+
|
63 |
+
def generate_response(self, message, history):
|
64 |
+
"""Generate appropriate response based on context"""
|
65 |
try:
|
66 |
+
urgency = self.assess_urgency(message)
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
+
# Build prompt with context
|
69 |
+
conversation_history = "\n".join([f"User: {h[0]}\nAssistant: {h[1]}" for h in (history or [])])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
prompt = f"""You are Pearly, an empathetic NHS medical triage assistant. Consider the conversation history and respond appropriately:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
Previous conversation:
|
74 |
+
{conversation_history}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
+
Current message: {message}
|
77 |
+
Urgency Level: {urgency}
|
|
|
|
|
78 |
|
79 |
+
Respond professionally and empathetically. For emergencies, recommend calling 999. For urgent cases, recommend NHS 111. For non-urgent cases, offer GP booking assistance. Ask relevant follow-up questions to better understand the situation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
+
Response:"""
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
+
# Generate response
|
84 |
+
inputs = self.tokenizer(
|
85 |
+
prompt,
|
86 |
+
return_tensors="pt",
|
87 |
+
max_length=512,
|
88 |
+
truncation=True
|
89 |
+
).to(self.model.device)
|
90 |
+
|
91 |
+
outputs = self.model.generate(
|
92 |
+
**inputs,
|
93 |
+
max_new_tokens=200,
|
94 |
+
temperature=0.7,
|
95 |
+
do_sample=True
|
96 |
+
)
|
97 |
+
|
98 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
99 |
+
|
100 |
+
# Format based on urgency
|
101 |
+
if urgency == "EMERGENCY":
|
102 |
+
return f"π¨ EMERGENCY: Please call 999 immediately.\n\n{response}\n\nWould you like first aid guidance while waiting for emergency services?"
|
103 |
+
elif urgency == "URGENT":
|
104 |
+
return f"β οΈ URGENT: {response}\n\nPlease consider calling NHS 111 for immediate advice. Would you like information about urgent care centers?"
|
105 |
+
else:
|
106 |
+
return f"{response}\n\nWould you like help booking a GP appointment?"
|
107 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
except Exception as e:
|
109 |
logger.error(f"Error generating response: {e}")
|
110 |
+
return "I apologize, but I'm having technical difficulties. If this is an emergency, please call 999 immediately. For urgent concerns, call 111."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
# Create Gradio interface
|
113 |
+
def create_demo():
|
114 |
+
bot = MedicalTriageBot()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
def chat(message, history):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
try:
|
118 |
+
response = bot.generate_response(message, history)
|
119 |
+
return response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
except Exception as e:
|
121 |
+
logger.error(f"Chat error: {e}")
|
122 |
+
return "I apologize, but I'm experiencing technical difficulties. For emergencies, please call 999."
|
123 |
+
|
124 |
+
demo = gr.ChatInterface(
|
125 |
+
fn=chat,
|
126 |
+
title="NHS Medical Triage Assistant - Pearly",
|
127 |
+
description="""
|
128 |
+
π Hello! I'm Pearly, your NHS medical triage assistant. I can help assess your symptoms and direct you to appropriate care.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
129 |
|
130 |
+
π¨ For emergencies, always call 999
|
131 |
+
β οΈ For urgent concerns, call NHS 111
|
132 |
+
π©ββοΈ For routine care, I can help book GP appointments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
+
Please describe your symptoms or concerns below.
|
135 |
+
""",
|
136 |
+
examples=[
|
137 |
+
"I've been having chest pain for the last hour",
|
138 |
+
"I have a fever and sore throat",
|
139 |
+
"I'd like to book a routine checkup",
|
140 |
+
],
|
141 |
+
theme="soft"
|
142 |
+
)
|
|
|
|
|
|
|
|
|
143 |
|
144 |
return demo
|
145 |
+
|
146 |
+
# Launch the app
|
147 |
if __name__ == "__main__":
|
148 |
demo = create_demo()
|
149 |
demo.launch()
|