Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -9,16 +9,12 @@ from sentence_transformers import SentenceTransformer
|
|
9 |
from peft import get_peft_model, LoraConfig, TaskType, prepare_model_for_kbit_training
|
10 |
import faiss
|
11 |
import numpy as np
|
12 |
-
from tqdm import tqdm
|
13 |
from datasets import load_dataset
|
14 |
-
from dataclasses import dataclass, field
|
15 |
from datetime import datetime
|
16 |
import json
|
17 |
from huggingface_hub import login
|
18 |
from dotenv import load_dotenv
|
19 |
|
20 |
-
|
21 |
-
|
22 |
# Load environment variables
|
23 |
load_dotenv()
|
24 |
|
@@ -30,62 +26,32 @@ logging.basicConfig(
|
|
30 |
logger = logging.getLogger(__name__)
|
31 |
|
32 |
# Retrieve secrets securely from environment variables
|
33 |
-
kaggle_username = os.getenv("KAGGLE_USERNAME")
|
34 |
-
kaggle_key = os.getenv("KAGGLE_KEY")
|
35 |
hf_token = os.getenv("HF_TOKEN")
|
36 |
-
wandb_key = os.getenv("WANDB_API_KEY")
|
37 |
-
|
38 |
-
# Log in to Hugging Face
|
39 |
if hf_token:
|
40 |
login(token=hf_token)
|
41 |
-
else:
|
42 |
-
logger.warning("Hugging Face token not found in environment variables.")
|
43 |
-
|
44 |
-
@dataclass
|
45 |
-
class AdaptiveBotConfig:
|
46 |
-
"""Configuration for adaptive medical triage bot"""
|
47 |
-
MODEL_NAME: str = "google/gemma-7b"
|
48 |
-
EMBEDDING_MODEL: str = "sentence-transformers/all-MiniLM-L6-v2"
|
49 |
-
|
50 |
-
# LoRA parameters
|
51 |
-
LORA_R: int = 8
|
52 |
-
LORA_ALPHA: int = 16
|
53 |
-
LORA_DROPOUT: float = 0.1
|
54 |
-
LORA_TARGET_MODULES: List[str] = field(default_factory=lambda: ["q_proj", "v_proj"])
|
55 |
-
|
56 |
-
# Training parameters
|
57 |
-
MAX_LENGTH: int = 512
|
58 |
-
BATCH_SIZE: int = 1
|
59 |
-
LEARNING_RATE: float = 1e-4
|
60 |
-
|
61 |
-
# Adaptive learning parameters
|
62 |
-
MIN_FEEDBACK_FOR_UPDATE: int = 5
|
63 |
-
FEEDBACK_HISTORY_SIZE: int = 100
|
64 |
-
LEARNING_RATE_DECAY: float = 0.95
|
65 |
|
66 |
class AdaptiveMedicalBot:
|
67 |
def __init__(self):
|
68 |
-
self.config = AdaptiveBotConfig()
|
69 |
self.setup_models()
|
70 |
self.load_datasets()
|
71 |
self.setup_adaptive_learning()
|
72 |
-
self.
|
73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
def setup_adaptive_learning(self):
|
75 |
"""Initialize adaptive learning components"""
|
76 |
self.feedback_history = []
|
77 |
-
self.conversation_patterns = {}
|
78 |
-
self.learning_buffer = []
|
79 |
-
|
80 |
-
# Load existing learning data if available
|
81 |
-
try:
|
82 |
-
if os.path.exists('learning_data.json'):
|
83 |
-
with open('learning_data.json', 'r') as f:
|
84 |
-
data = json.load(f)
|
85 |
-
self.conversation_patterns = data.get('patterns', {})
|
86 |
-
self.feedback_history = data.get('feedback', [])
|
87 |
-
except Exception as e:
|
88 |
-
logger.warning(f"Could not load learning data: {e}")
|
89 |
|
90 |
def setup_models(self):
|
91 |
"""Initialize models with LoRA and quantization"""
|
@@ -95,21 +61,15 @@ class AdaptiveMedicalBot:
|
|
95 |
bnb_4bit_quant_type="nf4",
|
96 |
bnb_4bit_compute_dtype=torch.float16
|
97 |
)
|
98 |
-
|
99 |
-
self.tokenizer = AutoTokenizer.from_pretrained(
|
100 |
-
self.config.MODEL_NAME,
|
101 |
-
trust_remote_code=True
|
102 |
-
)
|
103 |
-
|
104 |
base_model = AutoModelForCausalLM.from_pretrained(
|
105 |
self.config.MODEL_NAME,
|
106 |
quantization_config=bnb_config,
|
107 |
-
device_map="auto"
|
108 |
-
trust_remote_code=True
|
109 |
)
|
110 |
-
|
111 |
base_model = prepare_model_for_kbit_training(base_model)
|
112 |
-
|
113 |
lora_config = LoraConfig(
|
114 |
r=self.config.LORA_R,
|
115 |
lora_alpha=self.config.LORA_ALPHA,
|
@@ -118,720 +78,185 @@ class AdaptiveMedicalBot:
|
|
118 |
bias="none",
|
119 |
task_type=TaskType.CAUSAL_LM
|
120 |
)
|
121 |
-
|
122 |
self.model = get_peft_model(base_model, lora_config)
|
123 |
self.embedding_model = SentenceTransformer(self.config.EMBEDDING_MODEL)
|
124 |
-
|
125 |
except Exception as e:
|
126 |
logger.error(f"Error setting up models: {e}")
|
127 |
raise
|
128 |
|
129 |
def load_datasets(self):
|
130 |
-
"""Load and
|
131 |
try:
|
132 |
datasets = {
|
133 |
"medqa": load_dataset("medalpaca/medical_meadow_medqa", split="train[:500]"),
|
134 |
"diagnosis": load_dataset("wasiqnauman/medical-diagnosis-synthetic", split="train[:500]"),
|
135 |
"persona": load_dataset("AlekseyKorshuk/persona-chat", split="train[:500]")
|
136 |
}
|
137 |
-
|
138 |
self.documents = []
|
139 |
-
|
140 |
for dataset_name, dataset in datasets.items():
|
141 |
for item in dataset:
|
142 |
if dataset_name == "persona":
|
143 |
if isinstance(item.get('personality'), list):
|
144 |
-
self.documents.append({
|
145 |
-
'text': " ".join(item['personality']),
|
146 |
-
'type': 'persona'
|
147 |
-
})
|
148 |
else:
|
149 |
if 'input' in item and 'output' in item:
|
150 |
-
self.documents.append({
|
151 |
-
|
152 |
-
'type': dataset_name
|
153 |
-
})
|
154 |
-
|
155 |
self._create_index()
|
156 |
-
|
157 |
except Exception as e:
|
158 |
logger.error(f"Error loading datasets: {e}")
|
159 |
raise
|
160 |
|
161 |
def _create_index(self):
|
162 |
"""Create FAISS index for RAG"""
|
163 |
-
sample_embedding = self.embedding_model.encode("sample text")
|
164 |
-
self.index = faiss.IndexFlatIP(sample_embedding.shape[0])
|
165 |
-
|
166 |
-
batch_size = 32
|
167 |
-
for i in range(0, len(self.documents), batch_size):
|
168 |
-
batch = self.documents[i:i + batch_size]
|
169 |
-
texts = [doc['text'] for doc in batch]
|
170 |
-
embeddings = self.embedding_model.encode(texts)
|
171 |
-
self.index.add(np.array(embeddings))
|
172 |
-
|
173 |
-
def analyze_conversation_context(self, message: str, history: List[tuple]) -> Dict[str, Any]:
|
174 |
-
"""Analyze conversation context to determine appropriate follow-up questions"""
|
175 |
try:
|
176 |
-
|
177 |
-
|
178 |
-
time_indicators = set()
|
179 |
-
severity_indicators = set()
|
180 |
-
|
181 |
-
# Analyze current message and history
|
182 |
-
for msg in [message] + [h[0] for h in (history or [])]:
|
183 |
-
msg_lower = msg.lower()
|
184 |
-
|
185 |
-
# Update conversation patterns
|
186 |
-
pattern_key = self._extract_pattern_key(msg_lower)
|
187 |
-
if pattern_key in self.conversation_patterns:
|
188 |
-
self.conversation_patterns[pattern_key]['frequency'] += 1
|
189 |
-
else:
|
190 |
-
self.conversation_patterns[pattern_key] = {
|
191 |
-
'frequency': 1,
|
192 |
-
'successful_responses': []
|
193 |
-
}
|
194 |
-
|
195 |
-
return {
|
196 |
-
'needs_follow_up': True, # Always encourage follow-up questions
|
197 |
-
'conversation_depth': len(history) if history else 0,
|
198 |
-
'pattern_key': pattern_key
|
199 |
-
}
|
200 |
-
|
201 |
-
except Exception as e:
|
202 |
-
logger.error(f"Error analyzing conversation: {e}")
|
203 |
-
return {'needs_follow_up': True}
|
204 |
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
|
211 |
-
def generate_follow_up_questions(self, context: Dict[str, Any]
|
212 |
-
"""Generate
|
213 |
try:
|
214 |
-
|
215 |
-
|
216 |
-
Generate relevant follow-up questions to better understand their situation.
|
217 |
-
Focus on: timing, severity, associated symptoms, impact on daily life.
|
218 |
-
Do not make diagnoses or suggest treatments.
|
219 |
-
|
220 |
Questions:"""
|
221 |
-
|
222 |
-
inputs = self.tokenizer(
|
223 |
-
|
224 |
-
return_tensors="pt",
|
225 |
-
max_length=self.config.MAX_LENGTH,
|
226 |
-
truncation=True
|
227 |
-
).to(self.model.device)
|
228 |
-
|
229 |
-
outputs = self.model.generate(
|
230 |
-
**inputs,
|
231 |
-
max_new_tokens=100,
|
232 |
-
temperature=0.7,
|
233 |
-
do_sample=True
|
234 |
-
)
|
235 |
-
|
236 |
questions = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
237 |
-
return questions.split(
|
238 |
-
|
239 |
except Exception as e:
|
240 |
logger.error(f"Error generating follow-up questions: {e}")
|
241 |
return ["Could you tell me more about when this started?"]
|
242 |
|
243 |
-
def
|
244 |
-
"""
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
'timestamp': datetime.now().isoformat()
|
251 |
-
})
|
252 |
-
|
253 |
-
# Update conversation patterns
|
254 |
-
pattern_key = self._extract_pattern_key(message)
|
255 |
-
if pattern_key in self.conversation_patterns:
|
256 |
-
if feedback > 0:
|
257 |
-
self.conversation_patterns[pattern_key]['successful_responses'].append(response)
|
258 |
-
|
259 |
-
# Save learning data periodically
|
260 |
-
if len(self.feedback_history) % 10 == 0:
|
261 |
-
self._save_learning_data()
|
262 |
-
|
263 |
-
# Update model if enough feedback
|
264 |
-
if len(self.feedback_history) >= self.config.MIN_FEEDBACK_FOR_UPDATE:
|
265 |
-
self._update_model_from_feedback()
|
266 |
-
|
267 |
-
except Exception as e:
|
268 |
-
logger.error(f"Error processing feedback: {e}")
|
269 |
|
270 |
-
def
|
271 |
-
"""
|
272 |
try:
|
273 |
-
self.
|
274 |
-
|
275 |
-
# Update learning patterns
|
276 |
-
if len(self.learning_buffer) >= 10:
|
277 |
-
self._update_learning_model()
|
278 |
-
self._save_learning_data()
|
279 |
-
self.learning_buffer = []
|
280 |
-
|
281 |
-
except Exception as e:
|
282 |
-
logger.error(f"Error storing interaction: {e}")
|
283 |
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
successful_interactions = [
|
289 |
-
interaction for interaction in self.learning_buffer
|
290 |
-
if interaction.get('feedback', 0) > 0
|
291 |
-
]
|
292 |
-
|
293 |
-
if successful_interactions:
|
294 |
-
# Update conversation patterns
|
295 |
-
for interaction in successful_interactions:
|
296 |
-
pattern_key = self._extract_pattern_key(interaction['message'])
|
297 |
-
if pattern_key in self.conversation_patterns:
|
298 |
-
self.conversation_patterns[pattern_key]['successful_responses'].append(
|
299 |
-
interaction['response']
|
300 |
-
)
|
301 |
-
|
302 |
-
# Update document relevance
|
303 |
-
for interaction in successful_interactions:
|
304 |
-
for doc in interaction.get('relevant_docs', []):
|
305 |
-
doc_key = doc['text'][:100]
|
306 |
-
if doc_key in self.document_relevance:
|
307 |
-
self.document_relevance[doc_key]['success_count'] += 1
|
308 |
-
|
309 |
-
logger.info("Updated learning model with new patterns")
|
310 |
-
|
311 |
-
except Exception as e:
|
312 |
-
logger.error(f"Error updating learning model: {e}")
|
313 |
-
|
314 |
-
def generate_context_questions(self, message: str, history: List[tuple], context: Dict[str, Any]) -> List[str]:
|
315 |
-
"""Generate context-aware follow-up questions"""
|
316 |
-
try:
|
317 |
-
# Create dynamic question generation prompt
|
318 |
-
prompt = f"""Based on the conversation context, generate appropriate follow-up questions.
|
319 |
-
Consider:
|
320 |
-
- Understanding the main concern
|
321 |
-
- Timeline and progression
|
322 |
-
- Impact on daily life
|
323 |
-
- Related symptoms or factors
|
324 |
-
- Previous treatments or consultations
|
325 |
-
|
326 |
-
Current message: {message}
|
327 |
-
Context: {context}
|
328 |
-
|
329 |
-
Generate questions:"""
|
330 |
-
|
331 |
-
inputs = self.tokenizer(
|
332 |
-
prompt,
|
333 |
-
return_tensors="pt",
|
334 |
-
max_length=self.config.MAX_LENGTH,
|
335 |
-
truncation=True
|
336 |
-
).to(self.model.device)
|
337 |
-
|
338 |
-
outputs = self.model.generate(
|
339 |
-
**inputs,
|
340 |
-
max_new_tokens=150,
|
341 |
-
temperature=0.7,
|
342 |
-
do_sample=True
|
343 |
-
)
|
344 |
-
|
345 |
-
questions = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
346 |
-
return [q.strip() for q in questions.split("\n") if "?" in q]
|
347 |
-
|
348 |
-
except Exception as e:
|
349 |
-
logger.error(f"Error generating context questions: {e}")
|
350 |
-
return ["Could you tell me more about your concerns?"]
|
351 |
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
data = {
|
356 |
-
'patterns': self.conversation_patterns,
|
357 |
-
'feedback': self.feedback_history[-100:] # Keep last 100 entries
|
358 |
-
}
|
359 |
-
with open('learning_data.json', 'w') as f:
|
360 |
-
json.dump(data, f)
|
361 |
-
except Exception as e:
|
362 |
-
logger.error(f"Error saving learning data: {e}")
|
363 |
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
positive_feedback = [f for f in self.feedback_history if f['feedback'] > 0]
|
368 |
-
if len(positive_feedback) >= self.config.MIN_FEEDBACK_FOR_UPDATE:
|
369 |
-
# Prepare training data from successful interactions
|
370 |
-
training_data = []
|
371 |
-
for feedback in positive_feedback:
|
372 |
-
training_data.append({
|
373 |
-
'input_ids': self.tokenizer(
|
374 |
-
feedback['message'],
|
375 |
-
return_tensors='pt'
|
376 |
-
).input_ids,
|
377 |
-
'labels': self.tokenizer(
|
378 |
-
feedback['response'],
|
379 |
-
return_tensors='pt'
|
380 |
-
).input_ids
|
381 |
-
})
|
382 |
-
|
383 |
-
# Update model (simplified for example)
|
384 |
-
logger.info("Updating model from feedback")
|
385 |
-
self.feedback_history = [] # Clear history after update
|
386 |
-
|
387 |
-
except Exception as e:
|
388 |
-
logger.error(f"Error updating model from feedback: {e}")
|
389 |
|
390 |
-
|
391 |
-
|
392 |
-
try:
|
393 |
-
current_symptoms = set()
|
394 |
-
temporal_info = {}
|
395 |
-
related_conditions = set()
|
396 |
-
conversation_depth = len(history) if history else 0
|
397 |
-
|
398 |
-
# Analyze full conversation context
|
399 |
-
all_messages = [message] + [h[0] for h in (history or [])]
|
400 |
-
all_responses = [h[1] for h in (history or [])]
|
401 |
|
402 |
-
#
|
403 |
-
|
404 |
-
'symptoms_mentioned': current_symptoms,
|
405 |
-
'temporal_info': temporal_info,
|
406 |
-
'conversation_depth': conversation_depth,
|
407 |
-
'needs_clarification': True,
|
408 |
-
'specialist_referral_needed': False,
|
409 |
-
'previous_questions': set()
|
410 |
-
}
|
411 |
-
|
412 |
-
if history:
|
413 |
-
# Learn from previous interactions
|
414 |
-
for prev_msg, prev_resp in history:
|
415 |
-
if "?" in prev_resp:
|
416 |
-
context['previous_questions'].add(prev_resp.split("?")[0] + "?")
|
417 |
-
|
418 |
-
return context
|
419 |
-
|
420 |
-
except Exception as e:
|
421 |
-
logger.error(f"Error in symptom analysis: {e}")
|
422 |
-
return {'needs_clarification': True}
|
423 |
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
Focus on:
|
430 |
-
1. Symptom details (duration, severity, patterns)
|
431 |
-
2. Impact on daily life
|
432 |
-
3. Related symptoms or conditions
|
433 |
-
4. Previous treatments or consultations
|
434 |
-
|
435 |
-
Do not ask about:
|
436 |
-
- Questions already asked
|
437 |
-
- Diagnostic conclusions
|
438 |
-
- Treatment recommendations
|
439 |
-
|
440 |
-
Current context: {symptoms}
|
441 |
-
Previous questions asked: {symptoms.get('previous_questions', set())}
|
442 |
-
|
443 |
-
Generate questions:"""
|
444 |
-
|
445 |
-
inputs = self.tokenizer(
|
446 |
-
context_prompt,
|
447 |
-
return_tensors="pt",
|
448 |
-
max_length=self.config.MAX_LENGTH,
|
449 |
-
truncation=True
|
450 |
-
).to(self.model.device)
|
451 |
-
|
452 |
-
outputs = self.model.generate(
|
453 |
-
**inputs,
|
454 |
-
max_new_tokens=150,
|
455 |
-
temperature=0.7,
|
456 |
-
do_sample=True
|
457 |
-
)
|
458 |
-
|
459 |
-
questions = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
460 |
-
return [q.strip() for q in questions.split("\n") if "?" in q]
|
461 |
-
|
462 |
-
except Exception as e:
|
463 |
-
logger.error(f"Error generating questions: {e}")
|
464 |
-
return ["Could you tell me more about your symptoms?"]
|
465 |
|
466 |
-
|
467 |
-
"""Comprehensive medical context analysis"""
|
468 |
-
try:
|
469 |
-
# Initialize context tracking
|
470 |
-
context = {
|
471 |
-
'conversation_depth': len(history) if history else 0,
|
472 |
-
'needs_follow_up': True,
|
473 |
-
'previous_interactions': [],
|
474 |
-
'care_pathway': 'initial_triage',
|
475 |
-
'consultation_type': 'general',
|
476 |
-
}
|
477 |
-
|
478 |
-
# Analyze current conversation flow
|
479 |
-
all_messages = [message] + [h[0] for h in (history or [])]
|
480 |
-
|
481 |
-
# Build contextual understanding
|
482 |
-
for msg in all_messages:
|
483 |
-
msg_lower = msg.lower()
|
484 |
-
|
485 |
-
# Track conversation patterns
|
486 |
-
pattern_key = self._extract_pattern_key(msg_lower)
|
487 |
-
if pattern_key in self.conversation_patterns:
|
488 |
-
self.conversation_patterns[pattern_key]['frequency'] += 1
|
489 |
-
context['previous_patterns'] = self.conversation_patterns[pattern_key]
|
490 |
-
|
491 |
-
# Update learning patterns
|
492 |
-
self._update_learning_patterns(msg_lower, context)
|
493 |
-
|
494 |
-
return context
|
495 |
-
|
496 |
except Exception as e:
|
497 |
-
logger.error(f"Error
|
498 |
-
return {
|
499 |
-
|
500 |
-
|
501 |
-
|
|
|
|
|
502 |
try:
|
503 |
-
|
504 |
-
context = self.analyze_medical_context(message, history)
|
505 |
-
|
506 |
-
# Retrieve relevant knowledge
|
507 |
-
query_embedding = self.embedding_model.encode([message])
|
508 |
-
_, indices = self.index.search(query_embedding, k=5)
|
509 |
-
relevant_docs = [self.documents[idx] for idx in indices[0]]
|
510 |
-
|
511 |
-
# Build conversation history
|
512 |
-
conv_history = "\n".join([f"Patient: {h[0]}\nPearly: {h[1]}" for h in (history or [])])
|
513 |
-
|
514 |
-
# Create dynamic prompt based on context
|
515 |
-
prompt = f"""As Pearly, a compassionate GP medical triage assistant, help assess the patient's needs and provide appropriate guidance.
|
516 |
-
|
517 |
-
Previous Conversation:
|
518 |
-
{conv_history}
|
519 |
-
|
520 |
-
Current Message: {message}
|
521 |
-
|
522 |
-
Medical Knowledge Context:
|
523 |
-
{[doc['text'] for doc in relevant_docs]}
|
524 |
-
|
525 |
-
Guidelines:
|
526 |
-
- Show empathy and understanding
|
527 |
-
- Ask relevant follow-up questions
|
528 |
-
- Guide to appropriate care level (GP, 111, emergency services)
|
529 |
-
- Consider all aspects of patient care
|
530 |
-
- Do not diagnose or recommend treatments
|
531 |
-
- Focus on understanding concerns and proper healthcare guidance
|
532 |
-
|
533 |
-
Response:"""
|
534 |
-
|
535 |
-
# Generate base response
|
536 |
-
inputs = self.tokenizer(
|
537 |
-
prompt,
|
538 |
-
return_tensors="pt",
|
539 |
-
max_length=self.config.MAX_LENGTH,
|
540 |
-
truncation=True
|
541 |
-
).to(self.model.device)
|
542 |
-
|
543 |
-
outputs = self.model.generate(
|
544 |
-
**inputs,
|
545 |
-
max_new_tokens=300,
|
546 |
-
temperature=0.7,
|
547 |
-
do_sample=True
|
548 |
-
)
|
549 |
-
|
550 |
-
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
551 |
-
|
552 |
-
# Generate contextual follow-up questions
|
553 |
-
if context['needs_follow_up']:
|
554 |
-
follow_ups = self.generate_context_questions(message, history, context)
|
555 |
-
if follow_ups:
|
556 |
-
response = f"{response}\n\n{follow_ups[0]}"
|
557 |
-
|
558 |
-
# Store interaction for learning
|
559 |
-
self.store_interaction({
|
560 |
'message': message,
|
561 |
'response': response,
|
562 |
-
'
|
563 |
-
'relevant_docs': relevant_docs,
|
564 |
'timestamp': datetime.now().isoformat()
|
565 |
})
|
566 |
-
|
567 |
-
return {
|
568 |
-
'response': response,
|
569 |
-
'context': context
|
570 |
-
}
|
571 |
-
|
572 |
-
except Exception as e:
|
573 |
-
logger.error(f"Error generating response: {e}")
|
574 |
-
return {
|
575 |
-
'response': "I apologize, but I'm having technical difficulties. If this is an emergency, please call 999 immediately. For urgent concerns, call 111.",
|
576 |
-
'context': {}
|
577 |
-
}
|
578 |
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
try:
|
583 |
-
specialist_prompt = f"""Based on the symptoms and context, suggest appropriate specialist care pathways.
|
584 |
-
Context: {context}
|
585 |
-
Current response: {response}
|
586 |
-
|
587 |
-
Add appropriate specialist referral guidance:"""
|
588 |
-
|
589 |
-
inputs = self.tokenizer(
|
590 |
-
specialist_prompt,
|
591 |
-
return_tensors="pt",
|
592 |
-
max_length=self.config.MAX_LENGTH,
|
593 |
-
truncation=True
|
594 |
-
).to(self.model.device)
|
595 |
-
|
596 |
-
outputs = self.model.generate(
|
597 |
-
**inputs,
|
598 |
-
max_new_tokens=150,
|
599 |
-
temperature=0.7,
|
600 |
-
do_sample=True
|
601 |
-
)
|
602 |
-
|
603 |
-
specialist_guidance = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
604 |
-
|
605 |
-
return f"{response}\n\n{specialist_guidance}"
|
606 |
-
|
607 |
-
except Exception as e:
|
608 |
-
logger.error(f"Error adding specialist guidance: {e}")
|
609 |
-
return response
|
610 |
-
|
611 |
-
def update_learning_from_interaction(self, interaction: Dict[str, Any]):
|
612 |
-
"""Update adaptive learning system from interaction"""
|
613 |
-
try:
|
614 |
-
# Extract key information
|
615 |
-
message = interaction['message']
|
616 |
-
response = interaction['response']
|
617 |
-
context = interaction['context']
|
618 |
-
relevant_docs = interaction.get('relevant_docs', [])
|
619 |
-
|
620 |
-
# Update conversation patterns
|
621 |
-
pattern_key = self._extract_pattern_key(message)
|
622 |
-
if pattern_key in self.conversation_patterns:
|
623 |
-
self.conversation_patterns[pattern_key]['frequency'] += 1
|
624 |
-
if context.get('successful_response'):
|
625 |
-
self.conversation_patterns[pattern_key]['successful_responses'].append(response)
|
626 |
-
|
627 |
-
# Update document relevance scores
|
628 |
-
for doc in relevant_docs:
|
629 |
-
doc_key = doc['text'][:100] # Use first 100 chars as key
|
630 |
-
if doc_key in self.document_relevance:
|
631 |
-
self.document_relevance[doc_key]['usage_count'] += 1
|
632 |
-
if context.get('successful_response'):
|
633 |
-
self.document_relevance[doc_key]['success_count'] += 1
|
634 |
-
|
635 |
-
# Save learning data periodically
|
636 |
-
if len(self.learning_buffer) >= 10:
|
637 |
-
self._save_learning_data()
|
638 |
-
self.learning_buffer = []
|
639 |
-
|
640 |
except Exception as e:
|
641 |
-
logger.error(f"Error
|
642 |
|
643 |
def create_demo():
|
644 |
-
"""
|
645 |
try:
|
646 |
bot = AdaptiveMedicalBot()
|
647 |
-
|
648 |
-
def chat(message: str, history: List[Dict[str, str]]
|
649 |
try:
|
650 |
-
# Convert history to the format expected by the bot
|
651 |
bot_history = [(h["user"], h["bot"]) for h in history] if history else []
|
652 |
-
|
653 |
-
# Generate response
|
654 |
-
response_data = bot.generate_adaptive_response(message, bot_history)
|
655 |
response = response_data['response']
|
656 |
-
|
657 |
-
# Format response for Gradio chat
|
658 |
history.append({"role": "user", "content": message})
|
659 |
history.append({"role": "assistant", "content": response})
|
660 |
-
|
661 |
return history
|
662 |
-
|
663 |
except Exception as e:
|
664 |
logger.error(f"Chat error: {e}")
|
665 |
return history + [
|
666 |
{"role": "user", "content": message},
|
667 |
-
{"role": "assistant", "content": "I
|
668 |
]
|
669 |
|
670 |
def process_feedback(feedback: str, history: List[Dict[str, str]], comment: str = ""):
|
671 |
-
"""Process feedback with optional comment"""
|
672 |
try:
|
673 |
if history and len(history) >= 2:
|
674 |
last_user_msg = history[-2]["content"]
|
675 |
last_bot_msg = history[-1]["content"]
|
676 |
-
bot.
|
677 |
-
last_user_msg,
|
678 |
-
last_bot_msg,
|
679 |
-
1 if feedback == "👍" else -1,
|
680 |
-
comment=comment
|
681 |
-
)
|
682 |
except Exception as e:
|
683 |
logger.error(f"Error processing feedback: {e}")
|
684 |
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
gr.
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
-
}
|
711 |
-
.feature-card {
|
712 |
-
background: #f8f9fa;
|
713 |
-
padding: 15px;
|
714 |
-
border-radius: 10px;
|
715 |
-
text-align: center;
|
716 |
-
}
|
717 |
-
</style>
|
718 |
-
""")
|
719 |
|
720 |
-
# Emergency Banner
|
721 |
-
gr.HTML("""
|
722 |
-
<div class="emergency-banner">
|
723 |
-
🚨 For medical emergencies, always call 999 immediately 🚨
|
724 |
-
</div>
|
725 |
-
""")
|
726 |
-
|
727 |
-
# Header Section
|
728 |
-
with gr.Row(elem_classes="header"):
|
729 |
-
gr.Markdown("""
|
730 |
-
# GP Medical Triage Assistant - Pearly
|
731 |
-
|
732 |
-
Welcome to your personal medical triage assistant. I'm here to help assess your symptoms and guide you to appropriate care.
|
733 |
-
""")
|
734 |
-
|
735 |
-
# Main Features Grid
|
736 |
-
gr.HTML("""
|
737 |
-
<div class="features-grid">
|
738 |
-
<div class="feature-card">
|
739 |
-
🏥 GP Appointments
|
740 |
-
</div>
|
741 |
-
<div class="feature-card">
|
742 |
-
🔍 Symptom Assessment
|
743 |
-
</div>
|
744 |
-
<div class="feature-card">
|
745 |
-
⚡ Urgent Care Guide
|
746 |
-
</div>
|
747 |
-
<div class="feature-card">
|
748 |
-
💊 Medical Advice
|
749 |
-
</div>
|
750 |
-
</div>
|
751 |
-
""")
|
752 |
-
|
753 |
-
# Chat Interface
|
754 |
-
with gr.Row():
|
755 |
-
with gr.Column(scale=4):
|
756 |
-
chatbot = gr.Chatbot(
|
757 |
-
value=[{
|
758 |
-
"role": "assistant",
|
759 |
-
"content": "Hello! I'm Pearly, your GP medical assistant. How can I help you today?"
|
760 |
-
}],
|
761 |
-
height=500,
|
762 |
-
elem_id="chatbot",
|
763 |
-
type="messages",
|
764 |
-
show_label=False
|
765 |
-
)
|
766 |
-
|
767 |
-
with gr.Row():
|
768 |
-
msg = gr.Textbox(
|
769 |
-
label="Your message",
|
770 |
-
placeholder="Type your message here...",
|
771 |
-
lines=2,
|
772 |
-
scale=4
|
773 |
-
)
|
774 |
-
submit = gr.Button("Send", variant="primary", scale=1)
|
775 |
-
|
776 |
-
with gr.Column(scale=1):
|
777 |
-
# Quick Actions Panel
|
778 |
-
gr.Markdown("### Quick Actions")
|
779 |
-
emergency_btn = gr.Button("🚨 Emergency Info", variant="secondary")
|
780 |
-
nhs_111_btn = gr.Button("📞 NHS 111 Info", variant="secondary")
|
781 |
-
booking_btn = gr.Button("📅 GP Booking", variant="secondary")
|
782 |
-
|
783 |
-
# Conversation Controls
|
784 |
-
gr.Markdown("### Controls")
|
785 |
-
clear = gr.Button("🗑️ Clear Chat")
|
786 |
-
|
787 |
-
# Feedback Section
|
788 |
-
gr.Markdown("### Feedback")
|
789 |
-
feedback = gr.Radio(
|
790 |
-
choices=["👍", "👎"],
|
791 |
-
label="Was this response helpful?",
|
792 |
-
visible=True
|
793 |
-
)
|
794 |
-
feedback_text = gr.Textbox(
|
795 |
-
label="Additional comments (optional)",
|
796 |
-
placeholder="Tell us more about your experience...",
|
797 |
-
lines=2
|
798 |
-
)
|
799 |
-
|
800 |
-
# Examples Section
|
801 |
-
with gr.Accordion("Example Messages", open=False):
|
802 |
-
gr.Examples(
|
803 |
-
examples=[
|
804 |
-
["I've been having severe headaches for the past week"],
|
805 |
-
["I need to book a routine checkup"],
|
806 |
-
["I'm feeling very anxious lately and need help"],
|
807 |
-
["My child has had a fever for 2 days"],
|
808 |
-
["I need information about COVID-19 testing"]
|
809 |
-
],
|
810 |
-
inputs=msg
|
811 |
-
)
|
812 |
-
|
813 |
-
# Information Accordions
|
814 |
-
with gr.Accordion("NHS Services Guide", open=False):
|
815 |
-
gr.Markdown("""
|
816 |
-
### Emergency Services (999)
|
817 |
-
- Life-threatening emergencies
|
818 |
-
- Severe injuries
|
819 |
-
- Suspected heart attack or stroke
|
820 |
-
|
821 |
-
### NHS 111
|
822 |
-
- Urgent but non-emergency situations
|
823 |
-
- Medical advice needed
|
824 |
-
- Unsure where to go
|
825 |
-
|
826 |
-
### GP Services
|
827 |
-
- Routine check-ups
|
828 |
-
- Non-urgent medical issues
|
829 |
-
- Prescription renewals
|
830 |
-
""")
|
831 |
-
|
832 |
# Event Handlers
|
833 |
submit.click(
|
834 |
-
chat,
|
835 |
inputs=[msg, chatbot],
|
836 |
outputs=[chatbot]
|
837 |
).then(
|
@@ -841,7 +266,7 @@ def create_demo():
|
|
841 |
)
|
842 |
|
843 |
msg.submit(
|
844 |
-
chat,
|
845 |
inputs=[msg, chatbot],
|
846 |
outputs=[chatbot]
|
847 |
).then(
|
@@ -850,63 +275,56 @@ def create_demo():
|
|
850 |
msg
|
851 |
)
|
852 |
|
853 |
-
clear.click(
|
854 |
-
lambda: [[], ""],
|
855 |
-
None,
|
856 |
-
[chatbot, msg]
|
857 |
-
)
|
858 |
-
|
859 |
feedback.change(
|
860 |
-
process_feedback,
|
861 |
inputs=[feedback, chatbot, feedback_text],
|
862 |
outputs=[]
|
863 |
)
|
864 |
-
|
865 |
-
#
|
866 |
-
|
867 |
-
|
868 |
-
|
869 |
-
|
870 |
-
|
871 |
-
|
872 |
-
|
873 |
-
|
874 |
-
|
875 |
-
|
876 |
-
|
877 |
-
|
878 |
-
|
879 |
-
|
880 |
-
|
881 |
-
|
882 |
-
|
883 |
-
|
884 |
-
|
885 |
-
|
886 |
-
|
887 |
-
|
888 |
-
|
889 |
-
|
890 |
-
|
891 |
-
|
892 |
-
|
893 |
-
|
|
|
|
|
|
|
|
|
|
|
894 |
|
895 |
return demo
|
896 |
-
|
897 |
except Exception as e:
|
898 |
logger.error(f"Error creating demo: {e}")
|
899 |
raise
|
900 |
|
901 |
if __name__ == "__main__":
|
902 |
-
#
|
903 |
-
load_dotenv()
|
904 |
-
|
905 |
-
# Set up HuggingFace login if token exists
|
906 |
-
hf_token = os.getenv("HF_TOKEN")
|
907 |
-
if hf_token:
|
908 |
-
login(token=hf_token)
|
909 |
-
|
910 |
-
# Launch demo
|
911 |
demo = create_demo()
|
912 |
-
demo.launch()
|
|
|
|
|
|
9 |
from peft import get_peft_model, LoraConfig, TaskType, prepare_model_for_kbit_training
|
10 |
import faiss
|
11 |
import numpy as np
|
|
|
12 |
from datasets import load_dataset
|
|
|
13 |
from datetime import datetime
|
14 |
import json
|
15 |
from huggingface_hub import login
|
16 |
from dotenv import load_dotenv
|
17 |
|
|
|
|
|
18 |
# Load environment variables
|
19 |
load_dotenv()
|
20 |
|
|
|
26 |
logger = logging.getLogger(__name__)
|
27 |
|
28 |
# Retrieve secrets securely from environment variables
|
|
|
|
|
29 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
30 |
if hf_token:
|
31 |
login(token=hf_token)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
class AdaptiveMedicalBot:
|
34 |
def __init__(self):
|
35 |
+
self.config = self.AdaptiveBotConfig()
|
36 |
self.setup_models()
|
37 |
self.load_datasets()
|
38 |
self.setup_adaptive_learning()
|
39 |
+
self.conversation_history = [] # Maintain conversation history
|
40 |
+
|
41 |
+
class AdaptiveBotConfig:
|
42 |
+
MODEL_NAME = "google/gemma-7b"
|
43 |
+
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
|
44 |
+
LORA_R = 8
|
45 |
+
LORA_ALPHA = 16
|
46 |
+
LORA_DROPOUT = 0.1
|
47 |
+
LORA_TARGET_MODULES = ["q_proj", "v_proj"]
|
48 |
+
MAX_LENGTH = 512
|
49 |
+
BATCH_SIZE = 1
|
50 |
+
LEARNING_RATE = 1e-4
|
51 |
+
|
52 |
def setup_adaptive_learning(self):
|
53 |
"""Initialize adaptive learning components"""
|
54 |
self.feedback_history = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
def setup_models(self):
|
57 |
"""Initialize models with LoRA and quantization"""
|
|
|
61 |
bnb_4bit_quant_type="nf4",
|
62 |
bnb_4bit_compute_dtype=torch.float16
|
63 |
)
|
64 |
+
|
65 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.config.MODEL_NAME)
|
|
|
|
|
|
|
|
|
66 |
base_model = AutoModelForCausalLM.from_pretrained(
|
67 |
self.config.MODEL_NAME,
|
68 |
quantization_config=bnb_config,
|
69 |
+
device_map="auto"
|
|
|
70 |
)
|
71 |
+
|
72 |
base_model = prepare_model_for_kbit_training(base_model)
|
|
|
73 |
lora_config = LoraConfig(
|
74 |
r=self.config.LORA_R,
|
75 |
lora_alpha=self.config.LORA_ALPHA,
|
|
|
78 |
bias="none",
|
79 |
task_type=TaskType.CAUSAL_LM
|
80 |
)
|
81 |
+
|
82 |
self.model = get_peft_model(base_model, lora_config)
|
83 |
self.embedding_model = SentenceTransformer(self.config.EMBEDDING_MODEL)
|
|
|
84 |
except Exception as e:
|
85 |
logger.error(f"Error setting up models: {e}")
|
86 |
raise
|
87 |
|
88 |
def load_datasets(self):
|
89 |
+
"""Load and prepare datasets for RAG"""
|
90 |
try:
|
91 |
datasets = {
|
92 |
"medqa": load_dataset("medalpaca/medical_meadow_medqa", split="train[:500]"),
|
93 |
"diagnosis": load_dataset("wasiqnauman/medical-diagnosis-synthetic", split="train[:500]"),
|
94 |
"persona": load_dataset("AlekseyKorshuk/persona-chat", split="train[:500]")
|
95 |
}
|
96 |
+
|
97 |
self.documents = []
|
|
|
98 |
for dataset_name, dataset in datasets.items():
|
99 |
for item in dataset:
|
100 |
if dataset_name == "persona":
|
101 |
if isinstance(item.get('personality'), list):
|
102 |
+
self.documents.append({'text': " ".join(item['personality']), 'type': 'persona'})
|
|
|
|
|
|
|
103 |
else:
|
104 |
if 'input' in item and 'output' in item:
|
105 |
+
self.documents.append({'text': f"{item['input']}\n{item['output']}", 'type': dataset_name})
|
106 |
+
|
|
|
|
|
|
|
107 |
self._create_index()
|
|
|
108 |
except Exception as e:
|
109 |
logger.error(f"Error loading datasets: {e}")
|
110 |
raise
|
111 |
|
112 |
def _create_index(self):
|
113 |
"""Create FAISS index for RAG"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
try:
|
115 |
+
sample_embedding = self.embedding_model.encode("sample text")
|
116 |
+
self.index = faiss.IndexFlatIP(sample_embedding.shape[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
+
embeddings = [self.embedding_model.encode(doc['text']) for doc in self.documents]
|
119 |
+
self.index.add(np.array(embeddings))
|
120 |
+
except Exception as e:
|
121 |
+
logger.error(f"Error creating FAISS index: {e}")
|
122 |
+
raise
|
123 |
|
124 |
+
def generate_follow_up_questions(self, message: str, context: Dict[str, Any]) -> List[str]:
|
125 |
+
"""Generate follow-up questions based on context"""
|
126 |
try:
|
127 |
+
prompt = f"""Patient message: "{message}"
|
128 |
+
Generate relevant follow-up questions focusing on timing, severity, associated symptoms, and impact on daily life.
|
|
|
|
|
|
|
|
|
129 |
Questions:"""
|
130 |
+
|
131 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=self.config.MAX_LENGTH).to(self.model.device)
|
132 |
+
outputs = self.model.generate(inputs['input_ids'], max_new_tokens=50, temperature=0.7, do_sample=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
questions = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
134 |
+
return questions.split("\n")
|
|
|
135 |
except Exception as e:
|
136 |
logger.error(f"Error generating follow-up questions: {e}")
|
137 |
return ["Could you tell me more about when this started?"]
|
138 |
|
139 |
+
def assess_symptom_severity(self, message: str) -> str:
|
140 |
+
"""Assess severity based on keywords in the message"""
|
141 |
+
if "severe" in message.lower() or "emergency" in message.lower():
|
142 |
+
return "emergency"
|
143 |
+
elif "persistent" in message.lower() or "moderate" in message.lower():
|
144 |
+
return "urgent"
|
145 |
+
return "routine"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
146 |
|
147 |
+
def generate_response(self, message: str) -> Dict[str, Any]:
|
148 |
+
"""Generate a response based on the message"""
|
149 |
try:
|
150 |
+
severity = self.assess_symptom_severity(message)
|
151 |
+
response = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
152 |
|
153 |
+
# Retrieve relevant documents from FAISS
|
154 |
+
query_embedding = self.embedding_model.encode([message])
|
155 |
+
_, indices = self.index.search(query_embedding, k=5)
|
156 |
+
relevant_docs = [self.documents[idx]['text'] for idx in indices[0]]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
|
158 |
+
prompt = f"""As a compassionate medical assistant, analyze the patient message: "{message}".
|
159 |
+
Consider relevant knowledge and the following documents:\n{relevant_docs}.
|
160 |
+
Respond with empathy, follow-up questions, and care guidance."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
|
162 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", max_length=self.config.MAX_LENGTH).to(self.model.device)
|
163 |
+
outputs = self.model.generate(inputs['input_ids'], max_new_tokens=100, temperature=0.7, do_sample=True)
|
164 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
|
166 |
+
follow_ups = self.generate_follow_up_questions(message, {})
|
167 |
+
response += f"\n{follow_ups[0]}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
+
# Append response to conversation history
|
170 |
+
self.conversation_history.append((message, response))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
+
# Add care level guidance
|
173 |
+
if severity == "emergency":
|
174 |
+
response += "\nThis seems urgent. Please call 999 immediately."
|
175 |
+
elif severity == "urgent":
|
176 |
+
response += "\nConsider calling NHS 111 for urgent assistance."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
|
178 |
+
return {'response': response}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
179 |
except Exception as e:
|
180 |
+
logger.error(f"Error generating response: {e}")
|
181 |
+
return {
|
182 |
+
'response': "I'm experiencing technical issues. If this is an emergency, please call 999 immediately.",
|
183 |
+
}
|
184 |
+
|
185 |
+
def handle_feedback(self, message: str, response: str, feedback: int):
|
186 |
+
"""Update model based on feedback"""
|
187 |
try:
|
188 |
+
self.feedback_history.append({
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
189 |
'message': message,
|
190 |
'response': response,
|
191 |
+
'feedback': feedback,
|
|
|
192 |
'timestamp': datetime.now().isoformat()
|
193 |
})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
+
if len(self.feedback_history) >= 10:
|
196 |
+
# Implement learning updates from feedback
|
197 |
+
self.feedback_history = [] # Reset history after learning update
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
except Exception as e:
|
199 |
+
logger.error(f"Error processing feedback: {e}")
|
200 |
|
201 |
def create_demo():
|
202 |
+
"""Set up Gradio interface for the chatbot"""
|
203 |
try:
|
204 |
bot = AdaptiveMedicalBot()
|
205 |
+
|
206 |
+
def chat(message: str, history: List[Dict[str, str]]):
|
207 |
try:
|
|
|
208 |
bot_history = [(h["user"], h["bot"]) for h in history] if history else []
|
209 |
+
response_data = bot.generate_response(message)
|
|
|
|
|
210 |
response = response_data['response']
|
211 |
+
|
|
|
212 |
history.append({"role": "user", "content": message})
|
213 |
history.append({"role": "assistant", "content": response})
|
|
|
214 |
return history
|
|
|
215 |
except Exception as e:
|
216 |
logger.error(f"Chat error: {e}")
|
217 |
return history + [
|
218 |
{"role": "user", "content": message},
|
219 |
+
{"role": "assistant", "content": "I'm experiencing technical difficulties. For emergencies, call 999."}
|
220 |
]
|
221 |
|
222 |
def process_feedback(feedback: str, history: List[Dict[str, str]], comment: str = ""):
|
|
|
223 |
try:
|
224 |
if history and len(history) >= 2:
|
225 |
last_user_msg = history[-2]["content"]
|
226 |
last_bot_msg = history[-1]["content"]
|
227 |
+
bot.handle_feedback(last_user_msg, last_bot_msg, 1 if feedback == "👍" else -1)
|
|
|
|
|
|
|
|
|
|
|
228 |
except Exception as e:
|
229 |
logger.error(f"Error processing feedback: {e}")
|
230 |
|
231 |
+
with gr.Blocks() as demo:
|
232 |
+
chatbot = gr.Chatbot(value=[{"role": "assistant", "content": "Hello! I'm Pearly, your GP Triage medical assistant. How can I help you today?"}],
|
233 |
+
height=500,
|
234 |
+
elem_id="chatbot",
|
235 |
+
type="messages",
|
236 |
+
show_label=False
|
237 |
+
)
|
238 |
+
|
239 |
+
msg = gr.Textbox(
|
240 |
+
label="Your message",
|
241 |
+
placeholder="Type your message here...",
|
242 |
+
lines=2
|
243 |
+
)
|
244 |
+
submit = gr.Button("Send", variant="primary")
|
245 |
+
|
246 |
+
feedback = gr.Radio(
|
247 |
+
choices=["👍", "👎"],
|
248 |
+
label="Was this response helpful?",
|
249 |
+
visible=True
|
250 |
+
)
|
251 |
+
feedback_text = gr.Textbox(
|
252 |
+
label="Additional comments (optional)",
|
253 |
+
placeholder="Tell us more about your experience...",
|
254 |
+
lines=2
|
255 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
257 |
# Event Handlers
|
258 |
submit.click(
|
259 |
+
fn=chat,
|
260 |
inputs=[msg, chatbot],
|
261 |
outputs=[chatbot]
|
262 |
).then(
|
|
|
266 |
)
|
267 |
|
268 |
msg.submit(
|
269 |
+
fn=chat,
|
270 |
inputs=[msg, chatbot],
|
271 |
outputs=[chatbot]
|
272 |
).then(
|
|
|
275 |
msg
|
276 |
)
|
277 |
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
feedback.change(
|
279 |
+
fn=process_feedback,
|
280 |
inputs=[feedback, chatbot, feedback_text],
|
281 |
outputs=[]
|
282 |
)
|
283 |
+
|
284 |
+
# Clear Chat Handler
|
285 |
+
clear = gr.Button("🗑️ Clear Chat")
|
286 |
+
clear.click(lambda: [[], ""], None, [chatbot, msg])
|
287 |
+
|
288 |
+
# Additional Information Sections
|
289 |
+
gr.HTML("""
|
290 |
+
<div style="padding: 20px;">
|
291 |
+
<h2>Quick Actions</h2>
|
292 |
+
<button onclick="document.getElementById('chatbot').value += 'Emergency Info: For emergencies, call 999.'">Emergency Info</button>
|
293 |
+
<button onclick="document.getElementById('chatbot').value += 'NHS 111 Info: For urgent but non-emergency situations, call 111.'">NHS 111 Info</button>
|
294 |
+
<button onclick="document.getElementById('chatbot').value += 'GP Booking Info: For routine appointments with your GP.'">GP Booking</button>
|
295 |
+
</div>
|
296 |
+
""")
|
297 |
+
|
298 |
+
gr.Markdown("### Example Messages")
|
299 |
+
gr.Examples(
|
300 |
+
examples=[
|
301 |
+
["I've been having severe headaches for the past week"],
|
302 |
+
["I need to book a routine checkup"],
|
303 |
+
["I'm feeling very anxious lately and need help"],
|
304 |
+
["My child has had a fever for 2 days"],
|
305 |
+
["I need information about COVID-19 testing"]
|
306 |
+
],
|
307 |
+
inputs=msg
|
308 |
+
)
|
309 |
+
|
310 |
+
gr.Markdown("""
|
311 |
+
### NHS Services Guide
|
312 |
+
**999 - Emergency Services**: For life-threatening emergencies, severe injuries, heart attack, stroke.
|
313 |
+
|
314 |
+
**NHS 111**: Available 24/7 for urgent but non-life-threatening situations, medical advice, and guidance.
|
315 |
+
|
316 |
+
**GP Services**: Routine check-ups, non-urgent medical issues, and prescription renewals.
|
317 |
+
""")
|
318 |
|
319 |
return demo
|
320 |
+
|
321 |
except Exception as e:
|
322 |
logger.error(f"Error creating demo: {e}")
|
323 |
raise
|
324 |
|
325 |
if __name__ == "__main__":
|
326 |
+
# Launch Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
327 |
demo = create_demo()
|
328 |
+
demo.launch()
|
329 |
+
|
330 |
+
|