ruslanmv's picture
First commit
356a5f4
raw
history blame
8.5 kB
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
# List of available models
list_models = [
"SDXL 1.0", "SD 1.5", "OpenJourney", "Anything V4.0",
"Disney Pixar Cartoon", "Pixel Art XL", "Dalle 3 XL",
"Midjourney V4 XL", "Open Diffusion V1", "SSD 1B",
"Segmind Vega", "Animagine XL-2.0", "Animagine XL-3.0",
"OpenDalle", "OpenDalle V1.1", "PlaygroundV2 1024px aesthetic",
]
# Function to generate images from text
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7, seed=None):
if current_model == "SD 1.5":
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
elif current_model == "SDXL 1.0":
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
elif current_model == "OpenJourney":
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
elif current_model == "Anything V4.0":
API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0"
elif current_model == "Disney Pixar Cartoon":
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
elif current_model == "Pixel Art XL":
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
elif current_model == "Dalle 3 XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
elif current_model == "Midjourney V4 XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl"
elif current_model == "Open Diffusion V1":
API_URL = "https://api-inference.huggingface.co/models/openskyml/open-diffusion-v1"
elif current_model == "SSD 1B":
API_URL = "https://api-inference.huggingface.co/models/segmind/SSD-1B"
elif current_model == "Segmind Vega":
API_URL = "https://api-inference.huggingface.co/models/segmind/Segmind-Vega"
elif current_model == "Animagine XL-2.0":
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0"
elif current_model == "Animagine XL-3.0":
API_URL = "https://api-inference.huggingface.co/models/cagliostrolab/animagine-xl-3.0"
elif current_model == "OpenDalle":
API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/OpenDalle"
elif current_model == "OpenDalle V1.1":
API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/OpenDalleV1.1"
elif current_model == "PlaygroundV2 1024px aesthetic":
API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic"
API_TOKEN = os.environ.get("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
if image_style == "None style":
payload = {
"inputs": prompt + ", 8k",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Cinematic":
payload = {
"inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
"is_negative": is_negative + ", abstract, cartoon, stylized",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Digital Art":
payload = {
"inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
"is_negative": is_negative + ", sharp , modern , bright",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Portrait":
payload = {
"inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
return image
css = """
/* General Container Styles */
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
max-width: 730px !important;
margin: auto;
padding-top: 1.5rem;
text-align: center; /* Center the content horizontally */
}
/* Button Styles */
.gr-button {
color: white;
background: #007bff; /* Use a primary color for the background */
white-space: nowrap;
border: none;
padding: 10px 20px;
border-radius: 8px;
cursor: pointer;
transition: background-color 0.3s, color 0.3s;
}
.gr-button:hover {
background-color: #0056b3; /* Darken the background color on hover */
}
/* Share Button Styles */
#share-btn-container {
padding: 0.5rem !important;
background-color: #007bff; /* Use a primary color for the background */
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 13rem;
margin: 0 auto; /* Center the container horizontally */
transition: background-color 0.3s;
}
#share-btn-container:hover {
background-color: #0056b3; /* Darken the background color on hover */
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin: 0.5rem !important;
padding: 0.5rem !important;
}
/* Other Styles */
#gallery {
min-height: 22rem;
margin: auto; /* Center the gallery horizontally */
border-bottom-right-radius: 0.5rem !important;
border-bottom-left-radius: 0.5rem !important;
}
/* Centered Container for the Image */
.image-container {
max-width: 100%; /* Set the maximum width for the container */
margin: auto; /* Center the container horizontally */
padding: 20px; /* Add padding for spacing */
border: 1px solid #ccc; /* Add a subtle border to the container */
border-radius: 10px;
overflow: hidden; /* Hide overflow if the image is larger */
max-height: 22rem; /* Set a maximum height for the container */
}
/* Set a fixed size for the image */
.image-container img {
max-width: 100%; /* Ensure the image fills the container */
height: auto; /* Maintain aspect ratio */
max-height: 100%; /* Set a maximum height for the image */
border-radius: 10px;
box-shadow: 0px 2px 4px rgba(0, 0, 0, 0.2);
}
"""
PTI_SD_DESCRIPTION = '''
<div id="content_align">
<span style="color:darkred;font-size:32px;font-weight:bold">
MultiMulti Stable Diffusion Image Generation Simplified Version
</span>
</div>
<div id="content_align">
<span style="color:blue;font-size:16px;font-weight:bold">
Generate images directly from text prompts (no parameter tuning required)
</span>
</div>
<div id="content_align" style="margin-top: 10px;">
</div>
'''
# Creating Gradio interface
with gr.Blocks(css=css) as demo:
gr.Markdown(PTI_SD_DESCRIPTION)
with gr.Row():
with gr.Column():
current_model = gr.Dropdown(label="Select Model", choices=list_models, value=list_models[1])
text_prompt = gr.Textbox(label="Input Prompt", placeholder="Example: a cute dog", lines=2)
with gr.Column():
negative_prompt = gr.Textbox(label="Negative Prompt (optional)", placeholder="Example: blurry, unfocused", lines=2)
image_style = gr.Dropdown(label="Select Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style")
generate_button = gr.Button("Generate Image", variant='primary')
with gr.Row():
image_output = gr.Image(type="pil", label="Image Output")
generate_button.click(generate_txt2img, inputs=[current_model, text_prompt, negative_prompt, image_style], outputs=image_output)
# Launch the app
demo.launch()