|
import gradio as gr |
|
import requests |
|
import io |
|
import random |
|
import os |
|
from PIL import Image |
|
|
|
|
|
list_models = [ |
|
"SDXL 1.0", "SD 1.5", "OpenJourney", "Anything V4.0", |
|
"Disney Pixar Cartoon", "Pixel Art XL", "Dalle 3 XL", |
|
"Midjourney V4 XL", "Open Diffusion V1", "SSD 1B", |
|
"Segmind Vega", "Animagine XL-2.0", "Animagine XL-3.0", |
|
"OpenDalle", "OpenDalle V1.1", "PlaygroundV2 1024px aesthetic", |
|
] |
|
|
|
|
|
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7, seed=None): |
|
|
|
if current_model == "SD 1.5": |
|
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5" |
|
elif current_model == "SDXL 1.0": |
|
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0" |
|
elif current_model == "OpenJourney": |
|
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney" |
|
elif current_model == "Anything V4.0": |
|
API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0" |
|
elif current_model == "Disney Pixar Cartoon": |
|
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon" |
|
elif current_model == "Pixel Art XL": |
|
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl" |
|
elif current_model == "Dalle 3 XL": |
|
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl" |
|
elif current_model == "Midjourney V4 XL": |
|
API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl" |
|
elif current_model == "Open Diffusion V1": |
|
API_URL = "https://api-inference.huggingface.co/models/openskyml/open-diffusion-v1" |
|
elif current_model == "SSD 1B": |
|
API_URL = "https://api-inference.huggingface.co/models/segmind/SSD-1B" |
|
elif current_model == "Segmind Vega": |
|
API_URL = "https://api-inference.huggingface.co/models/segmind/Segmind-Vega" |
|
elif current_model == "Animagine XL-2.0": |
|
API_URL = "https://api-inference.huggingface.co/models/Linaqruf/animagine-xl-2.0" |
|
elif current_model == "Animagine XL-3.0": |
|
API_URL = "https://api-inference.huggingface.co/models/cagliostrolab/animagine-xl-3.0" |
|
elif current_model == "OpenDalle": |
|
API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/OpenDalle" |
|
elif current_model == "OpenDalle V1.1": |
|
API_URL = "https://api-inference.huggingface.co/models/dataautogpt3/OpenDalleV1.1" |
|
elif current_model == "PlaygroundV2 1024px aesthetic": |
|
API_URL = "https://api-inference.huggingface.co/models/playgroundai/playground-v2-1024px-aesthetic" |
|
|
|
|
|
API_TOKEN = os.environ.get("HF_READ_TOKEN") |
|
headers = {"Authorization": f"Bearer {API_TOKEN}"} |
|
|
|
|
|
if image_style == "None style": |
|
payload = { |
|
"inputs": prompt + ", 8k", |
|
"is_negative": is_negative, |
|
"steps": steps, |
|
"cfg_scale": cfg_scale, |
|
"seed": seed if seed is not None else random.randint(-1, 2147483647) |
|
} |
|
elif image_style == "Cinematic": |
|
payload = { |
|
"inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko", |
|
"is_negative": is_negative + ", abstract, cartoon, stylized", |
|
"steps": steps, |
|
"cfg_scale": cfg_scale, |
|
"seed": seed if seed is not None else random.randint(-1, 2147483647) |
|
} |
|
elif image_style == "Digital Art": |
|
payload = { |
|
"inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star", |
|
"is_negative": is_negative + ", sharp , modern , bright", |
|
"steps": steps, |
|
"cfg_scale": cfg_scale, |
|
"seed": seed if seed is not None else random.randint(-1, 2147483647) |
|
} |
|
elif image_style == "Portrait": |
|
payload = { |
|
"inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)", |
|
"is_negative": is_negative, |
|
"steps": steps, |
|
"cfg_scale": cfg_scale, |
|
"seed": seed if seed is not None else random.randint(-1, 2147483647) |
|
} |
|
|
|
image_bytes = requests.post(API_URL, headers=headers, json=payload).content |
|
image = Image.open(io.BytesIO(image_bytes)) |
|
return image |
|
|
|
|
|
def read_css_from_file(filename): |
|
with open(filename, "r") as file: |
|
return file.read() |
|
|
|
|
|
css = read_css_from_file("style.css") |
|
|
|
PTI_SD_DESCRIPTION = ''' |
|
<div id="content_align"> |
|
<span style="color:darkred;font-size:32px;font-weight:bold"> |
|
Stable Diffusion Models Image Generation |
|
</span> |
|
</div> |
|
<div id="content_align"> |
|
<span style="color:blue;font-size:16px;font-weight:bold"> |
|
Generate images directly from text prompts (no parameter tuning required) |
|
</span> |
|
</div> |
|
<div id="content_align" style="margin-top: 10px;"> |
|
</div> |
|
''' |
|
|
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(PTI_SD_DESCRIPTION) |
|
with gr.Row(): |
|
with gr.Column(): |
|
current_model = gr.Dropdown(label="Select Model", choices=list_models, value=list_models[1]) |
|
text_prompt = gr.Textbox(label="Input Prompt", placeholder="Example: woman in the street ", lines=2) |
|
|
|
with gr.Column(): |
|
negative_prompt = gr.Textbox(label="Negative Prompt (optional)", placeholder="Example: blurry, unfocused", lines=2) |
|
image_style = gr.Dropdown(label="Select Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style") |
|
|
|
generate_button = gr.Button("Generate Image", variant='primary') |
|
|
|
with gr.Row(): |
|
image_output = gr.Image(type="pil", label="Image Output") |
|
|
|
generate_button.click(generate_txt2img, inputs=[current_model, text_prompt, negative_prompt, image_style], outputs=image_output) |
|
|
|
|
|
demo.launch() |
|
|
|
|