Spaces:
Running
Running
from bark.generation import load_codec_model, generate_text_semantic, grab_best_device | |
from bark import SAMPLE_RATE | |
from encodec.utils import convert_audio | |
from bark.hubert.hubert_manager import HuBERTManager | |
from bark.hubert.pre_kmeans_hubert import CustomHubert | |
from bark.hubert.customtokenizer import CustomTokenizer | |
from bark.api import semantic_to_waveform | |
from scipy.io.wavfile import write as write_wav | |
from util.helper import create_filename | |
from util.settings import Settings | |
import torchaudio | |
import torch | |
import os | |
import gradio | |
def swap_voice_from_audio(swap_audio_filename, selected_speaker, tokenizer_lang, seed, batchcount, progress=gradio.Progress(track_tqdm=True)): | |
use_gpu = not os.environ.get("BARK_FORCE_CPU", False) | |
progress(0, desc="Loading Codec") | |
# From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer | |
hubert_manager = HuBERTManager() | |
hubert_manager.make_sure_hubert_installed() | |
hubert_manager.make_sure_tokenizer_installed(tokenizer_lang=tokenizer_lang) | |
# From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer | |
# Load HuBERT for semantic tokens | |
# Load the HuBERT model | |
device = grab_best_device(use_gpu) | |
hubert_model = CustomHubert(checkpoint_path='./models/hubert/hubert.pt').to(device) | |
model = load_codec_model(use_gpu=use_gpu) | |
# Load the CustomTokenizer model | |
tokenizer = CustomTokenizer.load_from_checkpoint(f'./models/hubert/{tokenizer_lang}_tokenizer.pth').to(device) # Automatically uses the right layers | |
progress(0.25, desc="Converting WAV") | |
# Load and pre-process the audio waveform | |
wav, sr = torchaudio.load(swap_audio_filename) | |
if wav.shape[0] == 2: # Stereo to mono if needed | |
wav = wav.mean(0, keepdim=True) | |
wav = convert_audio(wav, sr, model.sample_rate, model.channels) | |
wav = wav.to(device) | |
semantic_vectors = hubert_model.forward(wav, input_sample_hz=model.sample_rate) | |
semantic_tokens = tokenizer.get_token(semantic_vectors) | |
audio = semantic_to_waveform( | |
semantic_tokens, | |
history_prompt=selected_speaker, | |
temp=0.7, | |
silent=False, | |
output_full=False) | |
settings = Settings('config.yaml') | |
result = create_filename(settings.output_folder_path, None, "swapvoice",".wav") | |
write_wav(result, SAMPLE_RATE, audio) | |
return result | |