Spaces:
Running
Running
from bark.generation import load_codec_model, generate_text_semantic, grab_best_device | |
from encodec.utils import convert_audio | |
from bark.hubert.hubert_manager import HuBERTManager | |
from bark.hubert.pre_kmeans_hubert import CustomHubert | |
from bark.hubert.customtokenizer import CustomTokenizer | |
import torchaudio | |
import torch | |
import os | |
import gradio | |
def clone_voice(audio_filepath, dest_filename, progress=gradio.Progress(track_tqdm=True)): | |
# if len(text) < 1: | |
# raise gradio.Error('No transcription text entered!') | |
use_gpu = not os.environ.get("BARK_FORCE_CPU", False) | |
progress(0, desc="Loading Codec") | |
model = load_codec_model(use_gpu=use_gpu) | |
# From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer | |
hubert_manager = HuBERTManager() | |
hubert_manager.make_sure_hubert_installed() | |
hubert_manager.make_sure_tokenizer_installed() | |
# From https://github.com/gitmylo/bark-voice-cloning-HuBERT-quantizer | |
# Load HuBERT for semantic tokens | |
# Load the HuBERT model | |
device = grab_best_device(use_gpu) | |
hubert_model = CustomHubert(checkpoint_path='./models/hubert/hubert.pt').to(device) | |
# Load the CustomTokenizer model | |
tokenizer = CustomTokenizer.load_from_checkpoint('./models/hubert/en_tokenizer.pth').to(device) # change to the correct path | |
progress(0.25, desc="Converting WAV") | |
# Load and pre-process the audio waveform | |
wav, sr = torchaudio.load(audio_filepath) | |
if wav.shape[0] == 2: # Stereo to mono if needed | |
wav = wav.mean(0, keepdim=True) | |
wav = convert_audio(wav, sr, model.sample_rate, model.channels) | |
wav = wav.to(device) | |
progress(0.5, desc="Extracting codes") | |
semantic_vectors = hubert_model.forward(wav, input_sample_hz=model.sample_rate) | |
semantic_tokens = tokenizer.get_token(semantic_vectors) | |
# Extract discrete codes from EnCodec | |
with torch.no_grad(): | |
encoded_frames = model.encode(wav.unsqueeze(0)) | |
codes = torch.cat([encoded[0] for encoded in encoded_frames], dim=-1).squeeze() # [n_q, T] | |
# get seconds of audio | |
# seconds = wav.shape[-1] / model.sample_rate | |
# generate semantic tokens | |
# semantic_tokens = generate_text_semantic(text, max_gen_duration_s=seconds, top_k=50, top_p=.95, temp=0.7) | |
# move codes to cpu | |
codes = codes.cpu().numpy() | |
# move semantic tokens to cpu | |
semantic_tokens = semantic_tokens.cpu().numpy() | |
import numpy as np | |
output_path = dest_filename + '.npz' | |
np.savez(output_path, fine_prompt=codes, coarse_prompt=codes[:2, :], semantic_prompt=semantic_tokens) | |
return ["Finished", output_path] | |