Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import pipeline | |
from gtts import gTTS | |
import tempfile | |
import os | |
from groq import Groq | |
# Load the Whisper model from Hugging Face | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
whisper_model = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device) | |
# Initialize Groq client | |
client = Groq(api_key="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") | |
# Function to handle the voice-to-voice conversation | |
def voice_to_voice_conversation(audio): | |
# Read and transcribe audio using Whisper | |
transcription = whisper_model(audio)["text"] | |
# Get response from Groq API using Llama 8b | |
chat_completion = client.chat.completions.create( | |
messages=[{"role": "user", "content": transcription}], | |
model="llama3-8b-8192", | |
) | |
response_text = chat_completion.choices[0].message.content | |
# Convert text to speech using GTTS and save to a temporary file | |
tts = gTTS(response_text) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as tmp_file: | |
tts.save(tmp_file.name) | |
tmp_file_path = tmp_file.name | |
# Load the generated speech as an audio file for Gradio | |
return transcription, tmp_file_path | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=voice_to_voice_conversation, | |
inputs=gr.Audio(type="filepath"), | |
outputs=[gr.Textbox(label="Transcription"), gr.Audio(label="Response Audio")], | |
title="Voice-to-Voice Chatbot", | |
description="Speak into the microphone, and the chatbot will respond with a generated voice message.", | |
live=False | |
) | |
# Launch the interface | |
interface.launch() |