artificialguybr commited on
Commit
dddb041
·
1 Parent(s): 27063b6

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +53 -0
app.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import requests
3
+ import io
4
+ from PIL import Image
5
+ import json
6
+ import os
7
+
8
+ # Load LoRAs from JSON
9
+ with open('loras.json', 'r') as f:
10
+ loras = json.load(f)
11
+
12
+ # API call function
13
+ def query(payload, api_url, token):
14
+ headers = {"Authorization": f"Bearer {token}"}
15
+ response = requests.post(api_url, headers=headers, json=payload)
16
+ return io.BytesIO(response.content)
17
+
18
+ # Gradio UI
19
+ with gr.Blocks(css="custom.css") as demo:
20
+ title = gr.HTML(
21
+ """<h1><img src="https://i.imgur.com/vT48NAO.png" alt="LoRA"> LoRA the Explorer</h1>""",
22
+ elem_id="title",
23
+ )
24
+ selected_state = gr.State()
25
+ gallery = gr.Gallery(
26
+ value=[(item["image"], item["title"]) for item in loras],
27
+ label="LoRA Gallery",
28
+ allow_preview=False,
29
+ columns=3,
30
+ elem_id="gallery",
31
+ show_share_button=False
32
+ )
33
+ prompt = gr.Textbox(label="Prompt", show_label=False, lines=1, max_lines=1, placeholder="Type a prompt after selecting a LoRA", elem_id="prompt")
34
+ advanced_options = gr.Accordion("Advanced options", open=False)
35
+ weight = gr.Slider(0, 10, value=1, step=0.1, label="LoRA weight")
36
+ result = gr.Image(interactive=False, label="Generated Image", elem_id="result-image")
37
+
38
+ # Define the function to run when the button is clicked
39
+ def run_lora(prompt, weight, selected_state):
40
+ selected_lora = loras[selected_state]
41
+ api_url = f"https://api-inference.huggingface.co/models/{selected_lora['repo']}"
42
+ trigger_word = selected_lora["trigger_word"]
43
+ token = os.getenv("API_TOKEN")
44
+ payload = {"inputs": f"{prompt} {trigger_word}"}
45
+
46
+ image_bytes = query(payload, api_url, token)
47
+ return Image.open(image_bytes)
48
+
49
+ prompt.submit(
50
+ fn=run_lora,
51
+ inputs=[prompt, weight, selected_state],
52
+ outputs=[result],
53
+ )