Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,6 +2,7 @@ import gradio as gr
|
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
from evaluation import evaluate_model # Import your evaluation function
|
|
|
5 |
|
6 |
# Define the path where you want to save the leaderboard data
|
7 |
leaderboard_file = "leaderboard.csv"
|
@@ -12,53 +13,89 @@ if os.path.exists(leaderboard_file):
|
|
12 |
else:
|
13 |
leaderboard = pd.DataFrame(columns=["Model Name", "Score"])
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
# Submit the evaluation and update the leaderboard
|
16 |
def submit_evaluation(model_name, model_file):
|
17 |
"""
|
18 |
Handles the model submission, evaluates it, and updates the leaderboard.
|
19 |
"""
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
|
|
|
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
]
|
30 |
|
31 |
-
|
32 |
-
|
|
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
# Return the sorted leaderboard as output
|
44 |
-
return leaderboard_sorted
|
45 |
|
46 |
# Create the Gradio interface
|
47 |
with gr.Blocks() as demo:
|
48 |
gr.Markdown("# Model Evaluation Leaderboard")
|
49 |
-
|
50 |
-
#
|
51 |
with gr.Row():
|
52 |
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter the model name")
|
53 |
-
model_file_input = gr.File(
|
|
|
|
|
|
|
54 |
|
55 |
submit_button = gr.Button("Submit Evaluation")
|
56 |
-
|
57 |
-
# Leaderboard display
|
58 |
-
leaderboard_display = gr.Dataframe(leaderboard)
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
64 |
demo.launch(share=True)
|
|
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
from evaluation import evaluate_model # Import your evaluation function
|
5 |
+
import zipfile
|
6 |
|
7 |
# Define the path where you want to save the leaderboard data
|
8 |
leaderboard_file = "leaderboard.csv"
|
|
|
13 |
else:
|
14 |
leaderboard = pd.DataFrame(columns=["Model Name", "Score"])
|
15 |
|
16 |
+
|
17 |
+
def extract_model(model_file, extract_dir="models"):
|
18 |
+
"""
|
19 |
+
Extracts the uploaded model file if it's a zip archive.
|
20 |
+
"""
|
21 |
+
os.makedirs(extract_dir, exist_ok=True) # Ensure the directory exists
|
22 |
+
model_path = os.path.join(extract_dir, model_file.name)
|
23 |
+
|
24 |
+
if model_file.name.endswith(".zip"):
|
25 |
+
with zipfile.ZipFile(model_file, 'r') as zip_ref:
|
26 |
+
zip_ref.extractall(extract_dir)
|
27 |
+
print(f"Extracted model to: {extract_dir}")
|
28 |
+
return extract_dir
|
29 |
+
else:
|
30 |
+
# Save the file directly if it's not a zip
|
31 |
+
model_file.save(model_path)
|
32 |
+
return model_path
|
33 |
+
|
34 |
+
|
35 |
# Submit the evaluation and update the leaderboard
|
36 |
def submit_evaluation(model_name, model_file):
|
37 |
"""
|
38 |
Handles the model submission, evaluates it, and updates the leaderboard.
|
39 |
"""
|
40 |
+
try:
|
41 |
+
# Extract or save the uploaded model
|
42 |
+
model_path = extract_model(model_file)
|
43 |
+
|
44 |
+
print(f"Model saved or extracted to: {model_path}")
|
45 |
+
print("Starting evaluation...")
|
46 |
|
47 |
+
# Example test data (replace with your actual test dataset)
|
48 |
+
test_data = [
|
49 |
+
("Example text 1", 0), # (text, label)
|
50 |
+
("Example text 2", 1),
|
51 |
+
]
|
|
|
52 |
|
53 |
+
# Evaluate the model using your custom evaluation code
|
54 |
+
score = evaluate_model(model_path, test_data)
|
55 |
+
print(f"Model evaluated successfully. Score: {score}")
|
56 |
|
57 |
+
# Update the leaderboard
|
58 |
+
new_entry = {"Model Name": model_name, "Score": score}
|
59 |
+
global leaderboard
|
60 |
+
leaderboard = leaderboard.append(new_entry, ignore_index=True)
|
61 |
+
leaderboard_sorted = leaderboard.sort_values(by="Score", ascending=False)
|
62 |
|
63 |
+
# Save the updated leaderboard
|
64 |
+
leaderboard_sorted.to_csv(leaderboard_file, index=False)
|
65 |
+
print("Leaderboard updated.")
|
66 |
+
|
67 |
+
# Return the sorted leaderboard
|
68 |
+
return leaderboard_sorted, "Model submitted successfully!"
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
print(f"Error during evaluation: {str(e)}")
|
72 |
+
return leaderboard, f"Error: {str(e)}"
|
73 |
|
|
|
|
|
74 |
|
75 |
# Create the Gradio interface
|
76 |
with gr.Blocks() as demo:
|
77 |
gr.Markdown("# Model Evaluation Leaderboard")
|
78 |
+
|
79 |
+
# User inputs for model name and file upload
|
80 |
with gr.Row():
|
81 |
model_name_input = gr.Textbox(label="Model Name", placeholder="Enter the model name")
|
82 |
+
model_file_input = gr.File(
|
83 |
+
label="Upload Model (Supported Formats: .pt, .bin, .h5, .zip)",
|
84 |
+
file_types=[".pt", ".bin", ".h5", ".zip"]
|
85 |
+
)
|
86 |
|
87 |
submit_button = gr.Button("Submit Evaluation")
|
88 |
+
|
89 |
+
# Leaderboard display and status message
|
90 |
+
leaderboard_display = gr.Dataframe(leaderboard, label="Leaderboard")
|
91 |
+
status_message = gr.Textbox(label="Status", interactive=False)
|
92 |
+
|
93 |
+
# Link the submit button to the evaluation function
|
94 |
+
submit_button.click(
|
95 |
+
submit_evaluation,
|
96 |
+
inputs=[model_name_input, model_file_input],
|
97 |
+
outputs=[leaderboard_display, status_message]
|
98 |
+
)
|
99 |
+
|
100 |
+
# Launch the Gradio app
|
101 |
demo.launch(share=True)
|