Spaces:
Running
Running
File size: 1,212 Bytes
ebb2014 4c5f8db 8e4d744 ebb2014 89bf2ed 11c4f8e 9fb84ef 8e4d744 0fd5020 b94fd1c ebb2014 20106f5 a00765b 0ce89c9 ebb2014 8e4d744 0ce89c9 8e4d744 ebb2014 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import gradio as gr
import torch
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification, DistilBertForSequenceClassification
modelName = "Pendrokar/TorchMoji"
distil_tokenizer = AutoTokenizer.from_pretrained(modelName)
distil_model = AutoModelForSequenceClassification.from_pretrained(modelName, problem_type="multi_label_classification")
pipeline = pipeline(task="text-classification", model=distil_model, tokenizer=distil_tokenizer)
def predict(deepmoji_analysis):
predictions = pipeline(deepmoji_analysis)
output_text = ""
for p in predictions:
output_text += p['label'] + ' (' + str(p['score']) + ")\n"
return [distil_tokenizer(deepmoji_analysis)["input_ids"], output_text]
gradio_app = gr.Interface(
fn=predict,
inputs="text",
outputs=["text", "text"],
examples=[
"This GOT show just remember LOTR times!",
"Man, can't believe that my 30 days of training just got a NaN loss",
"I couldn't see 3 Tom Hollands coming...",
"There is nothing better than a soul-warming coffee in the morning",
"I fear the vanishing gradient", "deberta"
]
)
if __name__ == "__main__":
gradio_app.launch() |