File size: 25,559 Bytes
c055e89
 
 
7927ab2
cd5bd26
 
ca8a2ca
1ace391
 
74744eb
 
f1fda32
 
ca8a2ca
 
 
 
32b94cc
ca8a2ca
 
 
 
9ed5456
32b94cc
ca8a2ca
c055e89
cd5bd26
c3e4d11
74744eb
cd5bd26
 
0e3778b
 
 
9dd70a7
69be213
1d58cd7
5cd0e1e
746b467
5cd0e1e
 
a80c724
1d58cd7
cd5bd26
 
abcae38
cd5bd26
 
1ec31d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2ca5c30
 
 
 
 
 
abcae38
 
 
 
 
 
 
 
 
 
0e3778b
 
 
 
 
 
 
 
1ec31d9
cd5bd26
 
 
 
 
 
 
 
 
 
 
 
 
69be213
cd5bd26
ca8a2ca
 
 
 
cd5bd26
 
 
e5109be
18d89f0
 
 
 
20dc216
375d701
 
 
 
 
 
 
 
 
20dc216
18d89f0
 
d0dc5de
 
bcf0db8
18d89f0
b72e390
18d89f0
c055e89
cd5bd26
0217d78
c055e89
 
cd5bd26
c055e89
 
 
 
29a5f2c
 
 
 
 
 
 
 
 
 
 
 
 
c055e89
 
0636bf7
 
 
 
c62c303
 
 
375d701
c055e89
20dc216
 
 
aea0389
 
 
 
 
20dc216
c055e89
20dc216
cd5bd26
 
69be213
 
 
 
cd5bd26
1cb88a1
 
 
cd5bd26
 
 
ca8a2ca
cd5bd26
 
 
1cb88a1
cd5bd26
18d89f0
 
 
cd5bd26
18d89f0
 
 
20dc216
 
18d89f0
 
 
 
 
 
 
20dc216
 
29a5f2c
 
 
20dc216
1cb88a1
 
 
20dc216
e080e91
18d89f0
29a5f2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e080e91
ee22100
9952550
e080e91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
29a5f2c
2bb5d82
cd5bd26
2bb5d82
 
 
 
20dc216
2bb5d82
 
 
 
2c89463
ecca97f
9068c64
71abf2f
9952550
 
ecca97f
2c89463
 
 
 
 
 
 
 
 
b972230
2c89463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433517c
 
af37f5e
 
3425a41
20dc216
 
 
 
 
3679f5d
cd5bd26
 
20dc216
2ca5c30
 
 
 
 
 
 
3425a41
20dc216
 
 
 
 
3679f5d
cd5bd26
 
20dc216
cd5bd26
433517c
af37f5e
99f01ee
af37f5e
 
2b0c2d0
433517c
af37f5e
99f01ee
af37f5e
 
2b0c2d0
433517c
af37f5e
99f01ee
af37f5e
 
10801ae
433517c
af37f5e
99f01ee
af37f5e
 
10801ae
2b0c2d0
18d89f0
5404187
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4e7fbc
ee22100
2b0c2d0
ee22100
6aa0fa6
2b0c2d0
009ac4f
6c142f7
 
009ac4f
6c142f7
0830050
1925e72
2b0c2d0
b0986f3
20dc216
 
cd5bd26
29a5f2c
aea0389
 
 
 
 
 
29a5f2c
b0986f3
0636bf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ace391
4478ce8
1ace391
 
 
4478ce8
09cd5ce
 
 
 
ca8a2ca
619c449
c3e4d11
 
74744eb
 
 
b72e390
375d701
 
ca8a2ca
88f76ee
2ca5c30
 
73c86b6
c823dc3
32b94cc
73c86b6
 
 
 
c823dc3
 
 
 
7927ab2
 
 
 
 
 
73c86b6
 
7927ab2
 
 
 
 
 
09cd5ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1fda32
 
1f4eba7
 
20dc216
5147f0b
20dc216
7366b46
f1fda32
172fbec
f3e92f0
f1fda32
7366b46
1ba9e48
 
a629389
 
 
 
c4e7fbc
88f76ee
a629389
 
 
c4e7fbc
88f76ee
2ca5c30
c4e7fbc
1925e72
36d9fca
1925e72
9594ec2
c4e7fbc
1925e72
ca8a2ca
 
0636bf7
 
 
 
20dc216
0636bf7
20dc216
c055e89
 
72d3fba
cd5bd26
69be213
1cb88a1
 
a2eae81
 
8abe551
20dc216
72d3fba
2519d7f
 
d0dc5de
353a56a
2519d7f
cd5bd26
18d89f0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
import gradio as gr
import pandas as pd
from datasets import load_dataset
import threading, time, uuid, sqlite3, shutil, os, random, asyncio, threading
from pathlib import Path
from huggingface_hub import CommitScheduler, delete_file, hf_hub_download
from gradio_client import Client
import pyloudnorm as pyln
import soundfile as sf
from detoxify import Detoxify
toxicity = Detoxify('original')
with open('harvard_sentences.txt') as f:
    sents = f.read().strip().splitlines()
####################################
# Constants
####################################
AVAILABLE_MODELS = {
    'XTTS': 'xttsv2',
    'WhisperSpeech': 'whisperspeech',
    'ElevenLabs': 'eleven',
    'OpenVoice': 'openvoice',
    'Pheme': 'pheme',
    'MetaVoice': 'metavoice',
    'OpenAI': 'openai',
}

SPACE_ID = os.getenv('HF_ID')
MAX_SAMPLE_TXT_LENGTH = 150
MIN_SAMPLE_TXT_LENGTH = 10
DB_DATASET_ID = os.getenv('DATASET_ID')
DB_NAME = "database.db"

# If /data available => means local storage is enabled => let's use it!
DB_PATH = f"/data/{DB_NAME}" if os.path.isdir("/data") else DB_NAME
print(f"Using {DB_PATH}")
# AUDIO_DATASET_ID = "ttseval/tts-arena-new"
CITATION_TEXT = """@misc{tts-arena,
	title        = {Text to Speech Arena},
	author       = {mrfakename and Srivastav, Vaibhav and Pouget, Lucain and Fourrier, Clémentine},
	year         = 2024,
	publisher    = {Hugging Face},
	howpublished = "\\url{https://huggingface.co/spaces/ttseval/TTS-Arena}"
}"""

####################################
# Functions
####################################

def create_db_if_missing():
    conn = get_db()
    cursor = conn.cursor()
    cursor.execute('''
        CREATE TABLE IF NOT EXISTS model (
            name TEXT UNIQUE,
            upvote INTEGER,
            downvote INTEGER
        );
    ''')
    cursor.execute('''
        CREATE TABLE IF NOT EXISTS vote (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            username TEXT,
            model TEXT,
            vote INTEGER
        );
    ''')
    cursor.execute('''
        CREATE TABLE IF NOT EXISTS spokentext (
            id INTEGER PRIMARY KEY AUTOINCREMENT,
            spokentext TEXT
        );
    ''')
def get_db():
    return sqlite3.connect(DB_PATH)



####################################
# Space initialization
####################################

# Download existing DB
if not os.path.isfile(DB_PATH):
    print("Downloading DB...")
    try:
        cache_path = hf_hub_download(repo_id=DB_DATASET_ID, repo_type='dataset', filename=DB_NAME)
        shutil.copyfile(cache_path, DB_PATH)
        print("Downloaded DB")
    except Exception as e:
        print("Error while downloading DB:", e)

# Create DB table (if doesn't exist)
create_db_if_missing()
    
# Sync local DB with remote repo every 5 minute (only if a change is detected)
scheduler = CommitScheduler(
    repo_id=DB_DATASET_ID,
    repo_type="dataset",
    folder_path=Path(DB_PATH).parent,
    every=5,
    allow_patterns=DB_NAME,
)

# Load audio dataset
# audio_dataset = load_dataset(AUDIO_DATASET_ID)

####################################
# Router API
####################################
router = Client("ttseval/tts-router", hf_token=os.getenv('HF_TOKEN'))
####################################
# Gradio app
####################################
MUST_BE_LOGGEDIN = "Please login with Hugging Face to participate in the TTS Arena."
DESCR = """
# TTS Arena

Vote on different speech synthesis models!
""".strip()
# INSTR = """
# ## Instructions

# * Listen to two anonymous models
# * Vote on which synthesized audio sounds more natural to you
# * If there's a tie, click Skip

# **When you're ready to begin, login and begin voting!** The model names will be revealed once you vote.
# """.strip()
INSTR = """
## Instructions

* Enter text to synthesize.
* Listen to the two audio clips.
* Vote on which synthesized audio sounds more natural to you. **Did the model hallucinate?**

**When you're ready to begin, enter text.** Model names will be revealed once you vote.
""".strip()
request = ''
if SPACE_ID:
    request = f"""
### Request Model

Please fill out [this form](https://huggingface.co/spaces/{SPACE_ID}/discussions/new?title=%5BModel+Request%5D+&description=%23%23%20Model%20Request%0A%0A%2A%2AModel%20website%2Fpaper%20%28if%20applicable%29%2A%2A%3A%0A%2A%2AModel%20available%20on%2A%2A%3A%20%28coqui%7CHF%20pipeline%7Ccustom%20code%29%0A%2A%2AWhy%20do%20you%20want%20this%20model%20added%3F%2A%2A%0A%2A%2AComments%3A%2A%2A) to request a model.
"""
ABOUT = f"""
## About

The TTS Arena is a project created to evaluate leading speech synthesis models. It is inspired by the [Chatbot Arena](https://chat.lmsys.org/) by LMSYS.

### How it Works

First, vote on two samples of text-to-speech models. The models that synthesized the samples are not revealed to mitigate bias.

As you vote, the leaderboard will be updated based on votes. We calculate a score for each model using a method similar to the [Elo system](https://en.wikipedia.org/wiki/Elo_rating_system).

### Motivation

Recently, many new open-access speech synthesis models have been made available to the community. However, there is no standardized evaluation or benchmark to measure the quality and naturalness of these models.

The TTS Arena is an attempt to benchmark these models and find the highest-quality models available to the community.

{request}

### Privacy Statement

We may store text you enter and generated audio. We store a unique ID for each session.

### License

Please assume all generated audio clips are not licensed to be redistributed and may only be used for personal, non-commercial use.
""".strip()
LDESC = """
## Leaderboard

A list of the models, based on how highly they are ranked!

### **Important**: To keep a fair impression of results, the leaderboard will be **hidden** by default, until a large number of human ratings have been recorded.

Tick the `Reveal Preliminary Results` checkbox below if you wish to see the raw data.
""".strip()




# def reload_audio_dataset():
#     global audio_dataset
#     audio_dataset = load_dataset(AUDIO_DATASET_ID)
#     return 'Reload Audio Dataset'

def del_db(txt):
    if not txt.lower() == 'delete db':
        raise gr.Error('You did not enter "delete db"')

    # Delete local + remote
    os.remove(DB_PATH)
    delete_file(path_in_repo=DB_NAME, repo_id=DB_DATASET_ID, repo_type='dataset')

    # Recreate
    create_db_if_missing()
    return 'Delete DB'

theme = gr.themes.Base(
    font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)

model_names = {
    'styletts2': 'StyleTTS 2',
    'tacotron': 'Tacotron',
    'tacotronph': 'Tacotron Phoneme',
    'tacotrondca': 'Tacotron DCA',
    'speedyspeech': 'Speedy Speech',
    'overflow': 'Overflow TTS',
    'vits': 'VITS',
    'vitsneon': 'VITS Neon',
    'neuralhmm': 'Neural HMM',
    'glow': 'Glow TTS',
    'fastpitch': 'FastPitch',
    'jenny': 'Jenny',
    'tortoise': 'Tortoise TTS',
    'xtts2': 'Coqui XTTSv2',
    'xtts': 'Coqui XTTS',
    'openvoice': 'MyShell OpenVoice',
    'elevenlabs': 'ElevenLabs',
    'openai': 'OpenAI',
    'hierspeech': 'HierSpeech++',
    'pheme': 'PolyAI Pheme',
    'speecht5': 'SpeechT5',
    'metavoice': 'MetaVoice-1B',
}
model_licenses = {
    'styletts2': 'MIT',
    'tacotron': 'BSD-3',
    'tacotronph': 'BSD-3',
    'tacotrondca': 'BSD-3',
    'speedyspeech': 'BSD-3',
    'overflow': 'MIT',
    'vits': 'MIT',
    'openvoice': 'MIT',
    'vitsneon': 'BSD-3',
    'neuralhmm': 'MIT',
    'glow': 'MIT',
    'fastpitch': 'Apache 2.0',
    'jenny': 'Jenny License',
    'tortoise': 'Apache 2.0',
    'xtts2': 'CPML (NC)',
    'xtts': 'CPML (NC)',
    'elevenlabs': 'Proprietary',
    'openai': 'Proprietary',
    'hierspeech': 'MIT',
    'pheme': 'CC-BY',
    'speecht5': 'MIT',
    'metavoice': 'Apache 2.0',
    'elevenlabs': 'Proprietary',
    'whisperspeech': 'MIT',
}
model_links = {
    'styletts2': 'https://github.com/yl4579/StyleTTS2',
    'tacotron': 'https://github.com/NVIDIA/tacotron2',
    'speedyspeech': 'https://github.com/janvainer/speedyspeech',
    'overflow': 'https://github.com/shivammehta25/OverFlow',
    'vits': 'https://github.com/jaywalnut310/vits',
    'openvoice': 'https://github.com/myshell-ai/OpenVoice',
    'neuralhmm': 'https://github.com/ketranm/neuralHMM',
    'glow': 'https://github.com/jaywalnut310/glow-tts',
    'fastpitch': 'https://fastpitch.github.io/',
    'tortoise': 'https://github.com/neonbjb/tortoise-tts',
    'xtts2': 'https://huggingface.co/coqui/XTTS-v2',
    'xtts': 'https://huggingface.co/coqui/XTTS-v1',
    'elevenlabs': 'https://elevenlabs.io/',
    'openai': 'https://help.openai.com/en/articles/8555505-tts-api',
    'hierspeech': 'https://github.com/sh-lee-prml/HierSpeechpp',
    'pheme': 'https://github.com/PolyAI-LDN/pheme',
    'speecht5': 'https://github.com/microsoft/SpeechT5',
    'metavoice': 'https://github.com/metavoiceio/metavoice-src',
}
# def get_random_split(existing_split=None):
#     choice = random.choice(list(audio_dataset.keys()))
#     if existing_split and choice == existing_split:
#         return get_random_split(choice)
#     else:
#         return choice

# def get_random_splits():
#     choice1 = get_random_split()
#     choice2 = get_random_split(choice1)
#     return (choice1, choice2)
def model_license(name):
    print(name)
    for k, v in AVAILABLE_MODELS.items():
        if k == name:
            if v in model_licenses:
                return model_licenses[v]
    print('---')
    return 'Unknown'
def get_leaderboard(reveal_prelim: bool):
    conn = get_db()
    cursor = conn.cursor()
    sql = 'SELECT name, upvote, downvote FROM model'
    if not reveal_prelim: sql += ' WHERE EXISTS (SELECT 1 FROM model WHERE (upvote + downvote) > 750)'
    cursor.execute(sql)
    data = cursor.fetchall()
    df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
    df['license'] = df['name'].map(model_license)
    df['name'] = df['name'].replace(model_names)
    df['votes'] = df['upvote'] + df['downvote']
    # df['score'] = round((df['upvote'] / df['votes']) * 100, 2) # Percentage score

    ## ELO SCORE
    df['score'] = 1200
    for i in range(len(df)):
        for j in range(len(df)):
            if i != j:
                expected_a = 1 / (1 + 10 ** ((df['score'][j] - df['score'][i]) / 400))
                expected_b = 1 / (1 + 10 ** ((df['score'][i] - df['score'][j]) / 400))
                actual_a = df['upvote'][i] / df['votes'][i]
                actual_b = df['upvote'][j] / df['votes'][j]
                df.at[i, 'score'] += 32 * (actual_a - expected_a)
                df.at[j, 'score'] += 32 * (actual_b - expected_b)
    df['score'] = round(df['score'])
    ## ELO SCORE
    df = df.sort_values(by='score', ascending=False)
    df['order'] = ['#' + str(i + 1) for i in range(len(df))]
    # df = df[['name', 'score', 'upvote', 'votes']]
    df = df[['order', 'name', 'score', 'license', 'votes']]
    return df
def mkuuid(uid):
    if not uid:
        uid = uuid.uuid4()
    return uid
def upvote_model(model, uname):
    conn = get_db()
    cursor = conn.cursor()
    cursor.execute('UPDATE model SET upvote = upvote + 1 WHERE name = ?', (model,))
    if cursor.rowcount == 0:
        cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 1, 0)', (model,))
    cursor.execute('INSERT INTO vote (username, model, vote) VALUES (?, ?, ?)', (uname, model, 1,))
    with scheduler.lock:
        conn.commit()
    cursor.close()
def log_text(text):
    conn = get_db()
    cursor = conn.cursor()
    cursor.execute('INSERT INTO spokentext (spokentext) VALUES (?)', (text,))
    with scheduler.lock:
        conn.commit()
    cursor.close()
def downvote_model(model, uname):
    conn = get_db()
    cursor = conn.cursor()
    cursor.execute('UPDATE model SET downvote = downvote + 1 WHERE name = ?', (model,))
    if cursor.rowcount == 0:
        cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 0, 1)', (model,))
    cursor.execute('INSERT INTO vote (username, model, vote) VALUES (?, ?, ?)', (uname, model, -1,))
    with scheduler.lock:
        conn.commit()
    cursor.close()

def a_is_better(model1, model2, userid):
    userid = mkuuid(userid)
    if model1 and model2:
        upvote_model(model1, str(userid))
        downvote_model(model2, str(userid))
    return reload(model1, model2, userid, chose_a=True)
def b_is_better(model1, model2, userid):
    userid = mkuuid(userid)
    if model1 and model2:
        upvote_model(model2, str(userid))
        downvote_model(model1, str(userid))
    return reload(model1, model2, userid, chose_b=True)
def both_bad(model1, model2, userid):
    userid = mkuuid(userid)
    if model1 and model2:
        downvote_model(model1, str(userid))
        downvote_model(model2, str(userid))
    return reload(model1, model2, userid)
def both_good(model1, model2, userid):
    userid = mkuuid(userid)
    if model1 and model2:
        upvote_model(model1, str(userid))
        upvote_model(model2, str(userid))
    return reload(model1, model2, userid)
def reload(chosenmodel1=None, chosenmodel2=None, userid=None, chose_a=False, chose_b=False):
    # Select random splits
    # row = random.choice(list(audio_dataset['train']))
    # options = list(random.choice(list(audio_dataset['train'])).keys())
    # split1, split2 = random.sample(options, 2)
    # choice1, choice2 = (row[split1], row[split2])
    # if chosenmodel1 in model_names:
    #     chosenmodel1 = model_names[chosenmodel1]
    # if chosenmodel2 in model_names:
    #     chosenmodel2 = model_names[chosenmodel2]
    # out = [
    #     (choice1['sampling_rate'], choice1['array']),
    #     (choice2['sampling_rate'], choice2['array']),
    #     split1,
    #     split2
    # ]
    # if userid: out.append(userid)
    # if chosenmodel1: out.append(f'This model was {chosenmodel1}')
    # if chosenmodel2: out.append(f'This model was {chosenmodel2}')
    # return out
    # return (f'This model was {chosenmodel1}', f'This model was {chosenmodel2}', gr.update(visible=False), gr.update(visible=False))
    # return (gr.update(variant='secondary', value=chosenmodel1, interactive=False), gr.update(variant='secondary', value=chosenmodel2, interactive=False))
    out = [
        gr.update(interactive=False, visible=False),
        gr.update(interactive=False, visible=False)
    ]
    if chose_a == True:
        out.append(gr.update(value=f'Your vote: {chosenmodel1}', interactive=False, visible=True))
        out.append(gr.update(value=f'{chosenmodel2}', interactive=False, visible=True))
    else:
        out.append(gr.update(value=f'{chosenmodel1}', interactive=False, visible=True))
        out.append(gr.update(value=f'Your vote: {chosenmodel2}', interactive=False, visible=True))
    out.append(gr.update(visible=True))
    return out

with gr.Blocks() as leaderboard:
    gr.Markdown(LDESC)
    # df = gr.Dataframe(interactive=False, value=get_leaderboard())
    df = gr.Dataframe(interactive=False, min_width=0, wrap=True, column_widths=[30, 200, 50, 75, 50])
    with gr.Row():
        reveal_prelim = gr.Checkbox(label="Reveal Preliminary Results", info="Show all models, including models with very few human ratings.", scale=0)
        reloadbtn = gr.Button("Refresh")
    reveal_prelim.input(get_leaderboard, inputs=[reveal_prelim], outputs=[df])
    leaderboard.load(get_leaderboard, inputs=[reveal_prelim], outputs=[df])
    reloadbtn.click(get_leaderboard, inputs=[reveal_prelim], outputs=[df])
    gr.Markdown("DISCLAIMER: The licenses listed may not be accurate or up to date, you are responsible for checking the licenses before using the models. Also note that some models may have additional usage restrictions.")

# with gr.Blocks() as vote:
#     useridstate = gr.State()
#     gr.Markdown(INSTR)
#     # gr.LoginButton()
#     with gr.Row():
#         gr.HTML('<div align="left"><h3>Model A</h3></div>')
#         gr.HTML('<div align="right"><h3>Model B</h3></div>')
#     model1 = gr.Textbox(interactive=False, visible=False, lines=1, max_lines=1)
#     model2 = gr.Textbox(interactive=False, visible=False, lines=1, max_lines=1)
#     # with gr.Group():
#     #     with gr.Row():
#     #         prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A")
#     #         prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right")
#     #     with gr.Row():
#     #         aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
#     #         aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
#     with gr.Group():
#         with gr.Row():
#             with gr.Column():
#                 with gr.Group():
#                     prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A", lines=1, max_lines=1)
#                     aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
#             with gr.Column():
#                 with gr.Group():
#                     prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right", lines=1, max_lines=1)
#                     aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})


#     with gr.Row():
#         abetter = gr.Button("A is Better", variant='primary', scale=4)
#         # skipbtn = gr.Button("Skip", scale=1)
#         bbetter = gr.Button("B is Better", variant='primary', scale=4)
#     with gr.Row():
#         bothbad = gr.Button("Both are Bad", scale=2)
#         skipbtn = gr.Button("Skip", scale=1)
#         bothgood = gr.Button("Both are Good", scale=2)
#     outputs = [aud1, aud2, model1, model2, useridstate, prevmodel1, prevmodel2]
#     abetter.click(a_is_better, outputs=outputs, inputs=[model1, model2, useridstate])
#     bbetter.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate])
#     skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate])

#     bothbad.click(both_bad, outputs=outputs, inputs=[model1, model2, useridstate])
#     bothgood.click(both_good, outputs=outputs, inputs=[model1, model2, useridstate])

#     vote.load(reload, outputs=[aud1, aud2, model1, model2])
def doloudnorm(path):
    data, rate = sf.read(path)
    meter = pyln.Meter(rate)
    loudness = meter.integrated_loudness(data)
    loudness_normalized_audio = pyln.normalize.loudness(data, loudness, -12.0)
    sf.write(path, loudness_normalized_audio, rate)
############
# 2x speedup (hopefully)
############

def synthandreturn(text):
    text = text.strip()
    if len(text) > MAX_SAMPLE_TXT_LENGTH:
        raise gr.Error(f'You exceeded the limit of {MAX_SAMPLE_TXT_LENGTH} characters')
    if len(text) < MIN_SAMPLE_TXT_LENGTH:
        raise gr.Error(f'Not enough text')
    if (toxicity.predict(text)['toxicity'] > 0.5):
        raise gr.Error('Your text failed the toxicity test')
    if not text:
        raise gr.Error(f'You did not enter any text')
    # Get two random models
    mdl1, mdl2 = random.sample(list(AVAILABLE_MODELS.keys()), 2)
    log_text(text)
    print("[debug] Using", mdl1, mdl2)
    def predict_and_update_result(text, model, result_storage):
        result = router.predict(text, AVAILABLE_MODELS[model], api_name="/synthesize")
        doloudnorm(result)
        result_storage[model] = result
    results = {}
    thread1 = threading.Thread(target=predict_and_update_result, args=(text, mdl1, results))
    thread2 = threading.Thread(target=predict_and_update_result, args=(text, mdl2, results))
    thread1.start()
    thread2.start()
    thread1.join()
    thread2.join()
    return (
        text,
        "Synthesize",
        gr.update(visible=True), # r2
        mdl1, # model1
        mdl2, # model2
        gr.update(visible=True, value=results[mdl1]), # aud1
        gr.update(visible=True, value=results[mdl2]), # aud2
        gr.update(visible=True, interactive=True),
        gr.update(visible=True, interactive=True),
        gr.update(visible=False),
        gr.update(visible=False),
        gr.update(visible=False), #nxt round btn
    )
    # return (
    #     text,
    #     "Synthesize",
    #     gr.update(visible=True), # r2
    #     mdl1, # model1
    #     mdl2, # model2
    #     # 'Vote to reveal model A', # prevmodel1
    #     gr.update(visible=True, value=router.predict(
    #         text,
    #         AVAILABLE_MODELS[mdl1],
    #         api_name="/synthesize"
    #     )), # aud1
    #     # 'Vote to reveal model B', # prevmodel2
    #     gr.update(visible=True, value=router.predict(
    #         text,
    #         AVAILABLE_MODELS[mdl2],
    #         api_name="/synthesize"
    #     )), # aud2
    #     gr.update(visible=True, interactive=True),
    #     gr.update(visible=True, interactive=True),
    #     gr.update(visible=False),
    #     gr.update(visible=False),
    #     gr.update(visible=False), #nxt round btn
    # )
def randomsent():
    return random.choice(sents), '🎲'
def clear_stuff():
    return "", "Synthesize", gr.update(visible=False), '', '', gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
with gr.Blocks() as vote:
    useridstate = gr.State()
    gr.Markdown(INSTR)
    with gr.Group():
        with gr.Row():
            text = gr.Textbox(container=False, show_label=False, placeholder="Enter text to synthesize", lines=1, max_lines=1, scale=9999999, min_width=0)
            randomt = gr.Button('🎲', scale=0, min_width=0)
        randomt.click(randomsent, outputs=[text, randomt])
        btn = gr.Button("Synthesize", variant='primary')
    model1 = gr.Textbox(interactive=False, lines=1, max_lines=1, visible=False)
    model2 = gr.Textbox(interactive=False, lines=1, max_lines=1, visible=False)
    with gr.Row(visible=False) as r2:
        with gr.Column():
            with gr.Group():
                aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
                abetter = gr.Button("A is better", variant='primary')
                prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A", text_align="center", lines=1, max_lines=1, visible=False)
        with gr.Column():
            with gr.Group():
                aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
                bbetter = gr.Button("B is better", variant='primary')
                prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="center", lines=1, max_lines=1, visible=False)
    nxtroundbtn = gr.Button('Next round', visible=False)
    # outputs = [text, btn, r2, model1, model2, prevmodel1, aud1, prevmodel2, aud2, abetter, bbetter]
    outputs = [text, btn, r2, model1, model2, aud1, aud2, abetter, bbetter, prevmodel1, prevmodel2, nxtroundbtn]
    btn.click(synthandreturn, inputs=[text], outputs=outputs)
    nxtroundbtn.click(clear_stuff, outputs=outputs)

    # nxt_outputs = [prevmodel1, prevmodel2, abetter, bbetter]
    nxt_outputs = [abetter, bbetter, prevmodel1, prevmodel2, nxtroundbtn]
    abetter.click(a_is_better, outputs=nxt_outputs, inputs=[model1, model2, useridstate])
    bbetter.click(b_is_better, outputs=nxt_outputs, inputs=[model1, model2, useridstate])
    # skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate])

    # bothbad.click(both_bad, outputs=outputs, inputs=[model1, model2, useridstate])
    # bothgood.click(both_good, outputs=outputs, inputs=[model1, model2, useridstate])

    # vote.load(reload, outputs=[aud1, aud2, model1, model2])

with gr.Blocks() as about:
    gr.Markdown(ABOUT)
with gr.Blocks() as admin:
    rdb = gr.Button("Reload Audio Dataset")
    # rdb.click(reload_audio_dataset, outputs=rdb)
    with gr.Group():
        dbtext = gr.Textbox(label="Type \"delete db\" to confirm", placeholder="delete db")
        ddb = gr.Button("Delete DB")
    ddb.click(del_db, inputs=dbtext, outputs=ddb)
with gr.Blocks(theme=theme, css="footer {visibility: hidden}textbox{resize:none}", title="TTS Leaderboard") as demo:
    gr.Markdown(DESCR)
    gr.TabbedInterface([vote, leaderboard, about, admin], ['Vote', 'Leaderboard', 'About', 'Admin (ONLY IN BETA)'])
    if CITATION_TEXT:
        with gr.Row():
            with gr.Accordion("Citation", open=False):
                gr.Markdown(f"If you use this data in your publication, please cite us!\n\nCopy the BibTeX citation to cite this source:\n\n```bibtext\n{CITATION_TEXT}\n```\n\nPlease remember that all generated audio clips should be assumed unsuitable for redistribution or commercial use.")


demo.queue(api_open=False).launch(show_api=False)