Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
from datasets import load_dataset | |
import threading, time, uuid, sqlite3, shutil, os, random, asyncio, threading | |
from pathlib import Path | |
from huggingface_hub import CommitScheduler, delete_file, hf_hub_download | |
from gradio_client import Client | |
import pyloudnorm as pyln | |
import soundfile as sf | |
from detoxify import Detoxify | |
toxicity = Detoxify('original') | |
with open('harvard_sentences.txt') as f: | |
sents = f.read().strip().splitlines() | |
#################################### | |
# Constants | |
#################################### | |
AVAILABLE_MODELS = { | |
'XTTS': 'xttsv2', | |
'WhisperSpeech': 'whisperspeech', | |
'ElevenLabs': 'eleven', | |
'OpenVoice': 'openvoice', | |
'Pheme': 'pheme', | |
'MetaVoice': 'metavoice', | |
'OpenAI': 'openai', | |
} | |
SPACE_ID = os.getenv('HF_ID') | |
MAX_SAMPLE_TXT_LENGTH = 150 | |
MIN_SAMPLE_TXT_LENGTH = 10 | |
DB_DATASET_ID = os.getenv('DATASET_ID') | |
DB_NAME = "database.db" | |
# If /data available => means local storage is enabled => let's use it! | |
DB_PATH = f"/data/{DB_NAME}" if os.path.isdir("/data") else DB_NAME | |
print(f"Using {DB_PATH}") | |
# AUDIO_DATASET_ID = "ttseval/tts-arena-new" | |
CITATION_TEXT = """@misc{tts-arena, | |
title = {Text to Speech Arena}, | |
author = {mrfakename and Srivastav, Vaibhav and Pouget, Lucain and Fourrier, Clémentine}, | |
year = 2024, | |
publisher = {Hugging Face}, | |
howpublished = "\\url{https://huggingface.co/spaces/ttseval/TTS-Arena}" | |
}""" | |
#################################### | |
# Functions | |
#################################### | |
def create_db_if_missing(): | |
conn = get_db() | |
cursor = conn.cursor() | |
cursor.execute(''' | |
CREATE TABLE IF NOT EXISTS model ( | |
name TEXT UNIQUE, | |
upvote INTEGER, | |
downvote INTEGER | |
); | |
''') | |
cursor.execute(''' | |
CREATE TABLE IF NOT EXISTS vote ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
username TEXT, | |
model TEXT, | |
vote INTEGER | |
); | |
''') | |
cursor.execute(''' | |
CREATE TABLE IF NOT EXISTS spokentext ( | |
id INTEGER PRIMARY KEY AUTOINCREMENT, | |
spokentext TEXT | |
); | |
''') | |
def get_db(): | |
return sqlite3.connect(DB_PATH) | |
#################################### | |
# Space initialization | |
#################################### | |
# Download existing DB | |
if not os.path.isfile(DB_PATH): | |
print("Downloading DB...") | |
try: | |
cache_path = hf_hub_download(repo_id=DB_DATASET_ID, repo_type='dataset', filename=DB_NAME) | |
shutil.copyfile(cache_path, DB_PATH) | |
print("Downloaded DB") | |
except Exception as e: | |
print("Error while downloading DB:", e) | |
# Create DB table (if doesn't exist) | |
create_db_if_missing() | |
# Sync local DB with remote repo every 5 minute (only if a change is detected) | |
scheduler = CommitScheduler( | |
repo_id=DB_DATASET_ID, | |
repo_type="dataset", | |
folder_path=Path(DB_PATH).parent, | |
every=5, | |
allow_patterns=DB_NAME, | |
) | |
# Load audio dataset | |
# audio_dataset = load_dataset(AUDIO_DATASET_ID) | |
#################################### | |
# Router API | |
#################################### | |
router = Client("ttseval/tts-router", hf_token=os.getenv('HF_TOKEN')) | |
#################################### | |
# Gradio app | |
#################################### | |
MUST_BE_LOGGEDIN = "Please login with Hugging Face to participate in the TTS Arena." | |
DESCR = """ | |
# TTS Arena | |
Vote on different speech synthesis models! | |
""".strip() | |
# INSTR = """ | |
# ## Instructions | |
# * Listen to two anonymous models | |
# * Vote on which synthesized audio sounds more natural to you | |
# * If there's a tie, click Skip | |
# **When you're ready to begin, login and begin voting!** The model names will be revealed once you vote. | |
# """.strip() | |
INSTR = """ | |
## Instructions | |
* Enter text to synthesize. | |
* Listen to the two audio clips. | |
* Vote on which synthesized audio sounds more natural to you. **Did the model hallucinate?** | |
**When you're ready to begin, enter text.** Model names will be revealed once you vote. | |
""".strip() | |
request = '' | |
if SPACE_ID: | |
request = f""" | |
### Request Model | |
Please fill out [this form](https://huggingface.co/spaces/{SPACE_ID}/discussions/new?title=%5BModel+Request%5D+&description=%23%23%20Model%20Request%0A%0A%2A%2AModel%20website%2Fpaper%20%28if%20applicable%29%2A%2A%3A%0A%2A%2AModel%20available%20on%2A%2A%3A%20%28coqui%7CHF%20pipeline%7Ccustom%20code%29%0A%2A%2AWhy%20do%20you%20want%20this%20model%20added%3F%2A%2A%0A%2A%2AComments%3A%2A%2A) to request a model. | |
""" | |
ABOUT = f""" | |
## About | |
The TTS Arena is a project created to evaluate leading speech synthesis models. It is inspired by the [Chatbot Arena](https://chat.lmsys.org/) by LMSYS. | |
### How it Works | |
First, vote on two samples of text-to-speech models. The models that synthesized the samples are not revealed to mitigate bias. | |
As you vote, the leaderboard will be updated based on votes. We calculate a score for each model using a method similar to the [Elo system](https://en.wikipedia.org/wiki/Elo_rating_system). | |
### Motivation | |
Recently, many new open-access speech synthesis models have been made available to the community. However, there is no standardized evaluation or benchmark to measure the quality and naturalness of these models. | |
The TTS Arena is an attempt to benchmark these models and find the highest-quality models available to the community. | |
{request} | |
### Privacy Statement | |
We may store text you enter and generated audio. We store a unique ID for each session. | |
### License | |
Please assume all generated audio clips are not licensed to be redistributed and may only be used for personal, non-commercial use. | |
""".strip() | |
LDESC = """ | |
## Leaderboard | |
A list of the models, based on how highly they are ranked! | |
### **Important**: To keep a fair impression of results, the leaderboard will be **hidden** by default, until a large number of human ratings have been recorded. | |
Tick the `Reveal Preliminary Results` checkbox below if you wish to see the raw data. | |
""".strip() | |
# def reload_audio_dataset(): | |
# global audio_dataset | |
# audio_dataset = load_dataset(AUDIO_DATASET_ID) | |
# return 'Reload Audio Dataset' | |
def del_db(txt): | |
if not txt.lower() == 'delete db': | |
raise gr.Error('You did not enter "delete db"') | |
# Delete local + remote | |
os.remove(DB_PATH) | |
delete_file(path_in_repo=DB_NAME, repo_id=DB_DATASET_ID, repo_type='dataset') | |
# Recreate | |
create_db_if_missing() | |
return 'Delete DB' | |
theme = gr.themes.Base( | |
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], | |
) | |
model_names = { | |
'styletts2': 'StyleTTS 2', | |
'tacotron': 'Tacotron', | |
'tacotronph': 'Tacotron Phoneme', | |
'tacotrondca': 'Tacotron DCA', | |
'speedyspeech': 'Speedy Speech', | |
'overflow': 'Overflow TTS', | |
'vits': 'VITS', | |
'vitsneon': 'VITS Neon', | |
'neuralhmm': 'Neural HMM', | |
'glow': 'Glow TTS', | |
'fastpitch': 'FastPitch', | |
'jenny': 'Jenny', | |
'tortoise': 'Tortoise TTS', | |
'xtts2': 'Coqui XTTSv2', | |
'xtts': 'Coqui XTTS', | |
'openvoice': 'MyShell OpenVoice', | |
'elevenlabs': 'ElevenLabs', | |
'openai': 'OpenAI', | |
'hierspeech': 'HierSpeech++', | |
'pheme': 'PolyAI Pheme', | |
'speecht5': 'SpeechT5', | |
'metavoice': 'MetaVoice-1B', | |
} | |
model_licenses = { | |
'styletts2': 'MIT', | |
'tacotron': 'BSD-3', | |
'tacotronph': 'BSD-3', | |
'tacotrondca': 'BSD-3', | |
'speedyspeech': 'BSD-3', | |
'overflow': 'MIT', | |
'vits': 'MIT', | |
'openvoice': 'MIT', | |
'vitsneon': 'BSD-3', | |
'neuralhmm': 'MIT', | |
'glow': 'MIT', | |
'fastpitch': 'Apache 2.0', | |
'jenny': 'Jenny License', | |
'tortoise': 'Apache 2.0', | |
'xtts2': 'CPML (NC)', | |
'xtts': 'CPML (NC)', | |
'elevenlabs': 'Proprietary', | |
'openai': 'Proprietary', | |
'hierspeech': 'MIT', | |
'pheme': 'CC-BY', | |
'speecht5': 'MIT', | |
'metavoice': 'Apache 2.0', | |
'elevenlabs': 'Proprietary', | |
'whisperspeech': 'MIT', | |
} | |
model_links = { | |
'styletts2': 'https://github.com/yl4579/StyleTTS2', | |
'tacotron': 'https://github.com/NVIDIA/tacotron2', | |
'speedyspeech': 'https://github.com/janvainer/speedyspeech', | |
'overflow': 'https://github.com/shivammehta25/OverFlow', | |
'vits': 'https://github.com/jaywalnut310/vits', | |
'openvoice': 'https://github.com/myshell-ai/OpenVoice', | |
'neuralhmm': 'https://github.com/ketranm/neuralHMM', | |
'glow': 'https://github.com/jaywalnut310/glow-tts', | |
'fastpitch': 'https://fastpitch.github.io/', | |
'tortoise': 'https://github.com/neonbjb/tortoise-tts', | |
'xtts2': 'https://huggingface.co/coqui/XTTS-v2', | |
'xtts': 'https://huggingface.co/coqui/XTTS-v1', | |
'elevenlabs': 'https://elevenlabs.io/', | |
'openai': 'https://help.openai.com/en/articles/8555505-tts-api', | |
'hierspeech': 'https://github.com/sh-lee-prml/HierSpeechpp', | |
'pheme': 'https://github.com/PolyAI-LDN/pheme', | |
'speecht5': 'https://github.com/microsoft/SpeechT5', | |
'metavoice': 'https://github.com/metavoiceio/metavoice-src', | |
} | |
# def get_random_split(existing_split=None): | |
# choice = random.choice(list(audio_dataset.keys())) | |
# if existing_split and choice == existing_split: | |
# return get_random_split(choice) | |
# else: | |
# return choice | |
# def get_random_splits(): | |
# choice1 = get_random_split() | |
# choice2 = get_random_split(choice1) | |
# return (choice1, choice2) | |
def model_license(name): | |
print(name) | |
for k, v in AVAILABLE_MODELS.items(): | |
if k == name: | |
if v in model_licenses: | |
return model_licenses[v] | |
print('---') | |
return 'Unknown' | |
def get_leaderboard(reveal_prelim: bool): | |
conn = get_db() | |
cursor = conn.cursor() | |
sql = 'SELECT name, upvote, downvote FROM model' | |
if not reveal_prelim: sql += ' WHERE EXISTS (SELECT 1 FROM model WHERE (upvote + downvote) > 750)' | |
cursor.execute(sql) | |
data = cursor.fetchall() | |
df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote']) | |
df['license'] = df['name'].map(model_license) | |
df['name'] = df['name'].replace(model_names) | |
df['votes'] = df['upvote'] + df['downvote'] | |
# df['score'] = round((df['upvote'] / df['votes']) * 100, 2) # Percentage score | |
## ELO SCORE | |
df['score'] = 1200 | |
for i in range(len(df)): | |
for j in range(len(df)): | |
if i != j: | |
expected_a = 1 / (1 + 10 ** ((df['score'][j] - df['score'][i]) / 400)) | |
expected_b = 1 / (1 + 10 ** ((df['score'][i] - df['score'][j]) / 400)) | |
actual_a = df['upvote'][i] / df['votes'][i] | |
actual_b = df['upvote'][j] / df['votes'][j] | |
df.at[i, 'score'] += 32 * (actual_a - expected_a) | |
df.at[j, 'score'] += 32 * (actual_b - expected_b) | |
df['score'] = round(df['score']) | |
## ELO SCORE | |
df = df.sort_values(by='score', ascending=False) | |
df['order'] = ['#' + str(i + 1) for i in range(len(df))] | |
# df = df[['name', 'score', 'upvote', 'votes']] | |
df = df[['order', 'name', 'score', 'license', 'votes']] | |
return df | |
def mkuuid(uid): | |
if not uid: | |
uid = uuid.uuid4() | |
return uid | |
def upvote_model(model, uname): | |
conn = get_db() | |
cursor = conn.cursor() | |
cursor.execute('UPDATE model SET upvote = upvote + 1 WHERE name = ?', (model,)) | |
if cursor.rowcount == 0: | |
cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 1, 0)', (model,)) | |
cursor.execute('INSERT INTO vote (username, model, vote) VALUES (?, ?, ?)', (uname, model, 1,)) | |
with scheduler.lock: | |
conn.commit() | |
cursor.close() | |
def log_text(text): | |
conn = get_db() | |
cursor = conn.cursor() | |
cursor.execute('INSERT INTO spokentext (spokentext) VALUES (?)', (text,)) | |
with scheduler.lock: | |
conn.commit() | |
cursor.close() | |
def downvote_model(model, uname): | |
conn = get_db() | |
cursor = conn.cursor() | |
cursor.execute('UPDATE model SET downvote = downvote + 1 WHERE name = ?', (model,)) | |
if cursor.rowcount == 0: | |
cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 0, 1)', (model,)) | |
cursor.execute('INSERT INTO vote (username, model, vote) VALUES (?, ?, ?)', (uname, model, -1,)) | |
with scheduler.lock: | |
conn.commit() | |
cursor.close() | |
def a_is_better(model1, model2, userid): | |
userid = mkuuid(userid) | |
if model1 and model2: | |
upvote_model(model1, str(userid)) | |
downvote_model(model2, str(userid)) | |
return reload(model1, model2, userid, chose_a=True) | |
def b_is_better(model1, model2, userid): | |
userid = mkuuid(userid) | |
if model1 and model2: | |
upvote_model(model2, str(userid)) | |
downvote_model(model1, str(userid)) | |
return reload(model1, model2, userid, chose_b=True) | |
def both_bad(model1, model2, userid): | |
userid = mkuuid(userid) | |
if model1 and model2: | |
downvote_model(model1, str(userid)) | |
downvote_model(model2, str(userid)) | |
return reload(model1, model2, userid) | |
def both_good(model1, model2, userid): | |
userid = mkuuid(userid) | |
if model1 and model2: | |
upvote_model(model1, str(userid)) | |
upvote_model(model2, str(userid)) | |
return reload(model1, model2, userid) | |
def reload(chosenmodel1=None, chosenmodel2=None, userid=None, chose_a=False, chose_b=False): | |
# Select random splits | |
# row = random.choice(list(audio_dataset['train'])) | |
# options = list(random.choice(list(audio_dataset['train'])).keys()) | |
# split1, split2 = random.sample(options, 2) | |
# choice1, choice2 = (row[split1], row[split2]) | |
# if chosenmodel1 in model_names: | |
# chosenmodel1 = model_names[chosenmodel1] | |
# if chosenmodel2 in model_names: | |
# chosenmodel2 = model_names[chosenmodel2] | |
# out = [ | |
# (choice1['sampling_rate'], choice1['array']), | |
# (choice2['sampling_rate'], choice2['array']), | |
# split1, | |
# split2 | |
# ] | |
# if userid: out.append(userid) | |
# if chosenmodel1: out.append(f'This model was {chosenmodel1}') | |
# if chosenmodel2: out.append(f'This model was {chosenmodel2}') | |
# return out | |
# return (f'This model was {chosenmodel1}', f'This model was {chosenmodel2}', gr.update(visible=False), gr.update(visible=False)) | |
# return (gr.update(variant='secondary', value=chosenmodel1, interactive=False), gr.update(variant='secondary', value=chosenmodel2, interactive=False)) | |
out = [ | |
gr.update(interactive=False, visible=False), | |
gr.update(interactive=False, visible=False) | |
] | |
if chose_a == True: | |
out.append(gr.update(value=f'Your vote: {chosenmodel1}', interactive=False, visible=True)) | |
out.append(gr.update(value=f'{chosenmodel2}', interactive=False, visible=True)) | |
else: | |
out.append(gr.update(value=f'{chosenmodel1}', interactive=False, visible=True)) | |
out.append(gr.update(value=f'Your vote: {chosenmodel2}', interactive=False, visible=True)) | |
out.append(gr.update(visible=True)) | |
return out | |
with gr.Blocks() as leaderboard: | |
gr.Markdown(LDESC) | |
# df = gr.Dataframe(interactive=False, value=get_leaderboard()) | |
df = gr.Dataframe(interactive=False, min_width=0, wrap=True, column_widths=[30, 200, 50, 75, 50]) | |
with gr.Row(): | |
reveal_prelim = gr.Checkbox(label="Reveal Preliminary Results", info="Show all models, including models with very few human ratings.", scale=0) | |
reloadbtn = gr.Button("Refresh") | |
reveal_prelim.input(get_leaderboard, inputs=[reveal_prelim], outputs=[df]) | |
leaderboard.load(get_leaderboard, inputs=[reveal_prelim], outputs=[df]) | |
reloadbtn.click(get_leaderboard, inputs=[reveal_prelim], outputs=[df]) | |
gr.Markdown("DISCLAIMER: The licenses listed may not be accurate or up to date, you are responsible for checking the licenses before using the models. Also note that some models may have additional usage restrictions.") | |
# with gr.Blocks() as vote: | |
# useridstate = gr.State() | |
# gr.Markdown(INSTR) | |
# # gr.LoginButton() | |
# with gr.Row(): | |
# gr.HTML('<div align="left"><h3>Model A</h3></div>') | |
# gr.HTML('<div align="right"><h3>Model B</h3></div>') | |
# model1 = gr.Textbox(interactive=False, visible=False, lines=1, max_lines=1) | |
# model2 = gr.Textbox(interactive=False, visible=False, lines=1, max_lines=1) | |
# # with gr.Group(): | |
# # with gr.Row(): | |
# # prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A") | |
# # prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right") | |
# # with gr.Row(): | |
# # aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'}) | |
# # aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'}) | |
# with gr.Group(): | |
# with gr.Row(): | |
# with gr.Column(): | |
# with gr.Group(): | |
# prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A", lines=1, max_lines=1) | |
# aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'}) | |
# with gr.Column(): | |
# with gr.Group(): | |
# prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right", lines=1, max_lines=1) | |
# aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'}) | |
# with gr.Row(): | |
# abetter = gr.Button("A is Better", variant='primary', scale=4) | |
# # skipbtn = gr.Button("Skip", scale=1) | |
# bbetter = gr.Button("B is Better", variant='primary', scale=4) | |
# with gr.Row(): | |
# bothbad = gr.Button("Both are Bad", scale=2) | |
# skipbtn = gr.Button("Skip", scale=1) | |
# bothgood = gr.Button("Both are Good", scale=2) | |
# outputs = [aud1, aud2, model1, model2, useridstate, prevmodel1, prevmodel2] | |
# abetter.click(a_is_better, outputs=outputs, inputs=[model1, model2, useridstate]) | |
# bbetter.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate]) | |
# skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate]) | |
# bothbad.click(both_bad, outputs=outputs, inputs=[model1, model2, useridstate]) | |
# bothgood.click(both_good, outputs=outputs, inputs=[model1, model2, useridstate]) | |
# vote.load(reload, outputs=[aud1, aud2, model1, model2]) | |
def doloudnorm(path): | |
data, rate = sf.read(path) | |
meter = pyln.Meter(rate) | |
loudness = meter.integrated_loudness(data) | |
loudness_normalized_audio = pyln.normalize.loudness(data, loudness, -12.0) | |
sf.write(path, loudness_normalized_audio, rate) | |
############ | |
# 2x speedup (hopefully) | |
############ | |
def synthandreturn(text): | |
text = text.strip() | |
if len(text) > MAX_SAMPLE_TXT_LENGTH: | |
raise gr.Error(f'You exceeded the limit of {MAX_SAMPLE_TXT_LENGTH} characters') | |
if len(text) < MIN_SAMPLE_TXT_LENGTH: | |
raise gr.Error(f'Not enough text') | |
if (toxicity.predict(text)['toxicity'] > 0.5): | |
raise gr.Error('Your text failed the toxicity test') | |
if not text: | |
raise gr.Error(f'You did not enter any text') | |
# Get two random models | |
mdl1, mdl2 = random.sample(list(AVAILABLE_MODELS.keys()), 2) | |
log_text(text) | |
print("[debug] Using", mdl1, mdl2) | |
def predict_and_update_result(text, model, result_storage): | |
result = router.predict(text, AVAILABLE_MODELS[model], api_name="/synthesize") | |
doloudnorm(result) | |
result_storage[model] = result | |
results = {} | |
thread1 = threading.Thread(target=predict_and_update_result, args=(text, mdl1, results)) | |
thread2 = threading.Thread(target=predict_and_update_result, args=(text, mdl2, results)) | |
thread1.start() | |
thread2.start() | |
thread1.join() | |
thread2.join() | |
return ( | |
text, | |
"Synthesize", | |
gr.update(visible=True), # r2 | |
mdl1, # model1 | |
mdl2, # model2 | |
gr.update(visible=True, value=results[mdl1]), # aud1 | |
gr.update(visible=True, value=results[mdl2]), # aud2 | |
gr.update(visible=True, interactive=True), | |
gr.update(visible=True, interactive=True), | |
gr.update(visible=False), | |
gr.update(visible=False), | |
gr.update(visible=False), #nxt round btn | |
) | |
# return ( | |
# text, | |
# "Synthesize", | |
# gr.update(visible=True), # r2 | |
# mdl1, # model1 | |
# mdl2, # model2 | |
# # 'Vote to reveal model A', # prevmodel1 | |
# gr.update(visible=True, value=router.predict( | |
# text, | |
# AVAILABLE_MODELS[mdl1], | |
# api_name="/synthesize" | |
# )), # aud1 | |
# # 'Vote to reveal model B', # prevmodel2 | |
# gr.update(visible=True, value=router.predict( | |
# text, | |
# AVAILABLE_MODELS[mdl2], | |
# api_name="/synthesize" | |
# )), # aud2 | |
# gr.update(visible=True, interactive=True), | |
# gr.update(visible=True, interactive=True), | |
# gr.update(visible=False), | |
# gr.update(visible=False), | |
# gr.update(visible=False), #nxt round btn | |
# ) | |
def randomsent(): | |
return random.choice(sents), '🎲' | |
def clear_stuff(): | |
return "", "Synthesize", gr.update(visible=False), '', '', gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False) | |
with gr.Blocks() as vote: | |
useridstate = gr.State() | |
gr.Markdown(INSTR) | |
with gr.Group(): | |
with gr.Row(): | |
text = gr.Textbox(container=False, show_label=False, placeholder="Enter text to synthesize", lines=1, max_lines=1, scale=9999999, min_width=0) | |
randomt = gr.Button('🎲', scale=0, min_width=0, variant='tool') | |
randomt.click(randomsent, outputs=[text, randomt]) | |
btn = gr.Button("Synthesize", variant='primary') | |
model1 = gr.Textbox(interactive=False, lines=1, max_lines=1, visible=False) | |
model2 = gr.Textbox(interactive=False, lines=1, max_lines=1, visible=False) | |
with gr.Row(visible=False) as r2: | |
with gr.Column(): | |
with gr.Group(): | |
aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'}) | |
abetter = gr.Button("A is better", variant='primary') | |
prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A", text_align="center", lines=1, max_lines=1, visible=False) | |
with gr.Column(): | |
with gr.Group(): | |
aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'}) | |
bbetter = gr.Button("B is better", variant='primary') | |
prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="center", lines=1, max_lines=1, visible=False) | |
nxtroundbtn = gr.Button('Next round', visible=False) | |
# outputs = [text, btn, r2, model1, model2, prevmodel1, aud1, prevmodel2, aud2, abetter, bbetter] | |
outputs = [text, btn, r2, model1, model2, aud1, aud2, abetter, bbetter, prevmodel1, prevmodel2, nxtroundbtn] | |
btn.click(synthandreturn, inputs=[text], outputs=outputs) | |
nxtroundbtn.click(clear_stuff, outputs=outputs) | |
# nxt_outputs = [prevmodel1, prevmodel2, abetter, bbetter] | |
nxt_outputs = [abetter, bbetter, prevmodel1, prevmodel2, nxtroundbtn] | |
abetter.click(a_is_better, outputs=nxt_outputs, inputs=[model1, model2, useridstate]) | |
bbetter.click(b_is_better, outputs=nxt_outputs, inputs=[model1, model2, useridstate]) | |
# skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2, useridstate]) | |
# bothbad.click(both_bad, outputs=outputs, inputs=[model1, model2, useridstate]) | |
# bothgood.click(both_good, outputs=outputs, inputs=[model1, model2, useridstate]) | |
# vote.load(reload, outputs=[aud1, aud2, model1, model2]) | |
with gr.Blocks() as about: | |
gr.Markdown(ABOUT) | |
with gr.Blocks() as admin: | |
rdb = gr.Button("Reload Audio Dataset") | |
# rdb.click(reload_audio_dataset, outputs=rdb) | |
with gr.Group(): | |
dbtext = gr.Textbox(label="Type \"delete db\" to confirm", placeholder="delete db") | |
ddb = gr.Button("Delete DB") | |
ddb.click(del_db, inputs=dbtext, outputs=ddb) | |
with gr.Blocks(theme=theme, css="footer {visibility: hidden}textbox{resize:none}", title="TTS Leaderboard") as demo: | |
gr.Markdown(DESCR) | |
gr.TabbedInterface([vote, leaderboard, about, admin], ['Vote', 'Leaderboard', 'About', 'Admin (ONLY IN BETA)']) | |
if CITATION_TEXT: | |
with gr.Row(): | |
with gr.Accordion("Citation", open=False): | |
gr.Markdown(f"If you use this data in your publication, please cite us!\n\nCopy the BibTeX citation to cite this source:\n\n```bibtext\n{CITATION_TEXT}\n```\n\nPlease remember that all generated audio clips should be assumed unsuitable for redistribution or commercial use.") | |
demo.queue(api_open=False).launch(show_api=False) |