Pendrokar commited on
Commit
80f449e
·
1 Parent(s): bde9568

always pick one of top five models

Browse files
Files changed (1) hide show
  1. app.py +23 -13
app.py CHANGED
@@ -360,6 +360,7 @@ cached_samples: List[Sample] = []
360
  voting_users = {
361
  # userid as the key and USER() as the value
362
  }
 
363
 
364
  def generate_matching_pairs(samples: List[Sample]) -> List[Tuple[Sample, Sample]]:
365
  transcript_groups: Dict[str, List[Sample]] = {}
@@ -685,12 +686,12 @@ def model_license(name):
685
  def get_leaderboard(reveal_prelim = False):
686
  conn = get_db()
687
  cursor = conn.cursor()
688
- sql = 'SELECT name, upvote, downvote FROM model'
689
  # if not reveal_prelim: sql += ' WHERE EXISTS (SELECT 1 FROM model WHERE (upvote + downvote) > 750)'
690
  if not reveal_prelim: sql += ' WHERE (upvote + downvote) > 300'
691
  cursor.execute(sql)
692
  data = cursor.fetchall()
693
- df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
694
  # df['license'] = df['name'].map(model_license)
695
  df['name'] = df['name'].replace(model_names)
696
  for i in range(len(df)):
@@ -726,6 +727,12 @@ def get_leaderboard(reveal_prelim = False):
726
  return '#'+ rank
727
 
728
  df['order'] = [assign_medal(i, not reveal_prelim and len(df) > 2) for i in range(len(df))]
 
 
 
 
 
 
729
  df = df[['order', 'name', 'score', 'votes']]
730
  return df
731
 
@@ -940,17 +947,20 @@ def synthandreturn(text, request: gr.Request):
940
 
941
  # forced model: your TTS model versus The World!!!
942
  # mdl1 = 'Pendrokar/xVASynth'
943
- # vsModels = dict(AVAILABLE_MODELS)
944
- # del vsModels[mdl1]
945
- # randomize position of the forced model
946
- # mdl2 = random.sample(list(vsModels.keys()), 1)
947
- # forced random
948
- # mdl1, mdl2 = random.sample(list([mdl1, mdl2[0]]), 2)
949
-
950
- # actual random
951
- mdl1, mdl2 = random.sample(list(AVAILABLE_MODELS.keys()), 2)
952
- # pointless saving of text to DB
953
- # log_text(text)
 
 
 
954
  print("[debug] Using", mdl1, mdl2)
955
  def predict_and_update_result(text, model, result_storage, request:gr.Request):
956
 
 
360
  voting_users = {
361
  # userid as the key and USER() as the value
362
  }
363
+ top_five = []
364
 
365
  def generate_matching_pairs(samples: List[Sample]) -> List[Tuple[Sample, Sample]]:
366
  transcript_groups: Dict[str, List[Sample]] = {}
 
686
  def get_leaderboard(reveal_prelim = False):
687
  conn = get_db()
688
  cursor = conn.cursor()
689
+ sql = 'SELECT name, upvote, downvote, name AS orig_name FROM model'
690
  # if not reveal_prelim: sql += ' WHERE EXISTS (SELECT 1 FROM model WHERE (upvote + downvote) > 750)'
691
  if not reveal_prelim: sql += ' WHERE (upvote + downvote) > 300'
692
  cursor.execute(sql)
693
  data = cursor.fetchall()
694
+ df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote', 'orig_name'])
695
  # df['license'] = df['name'].map(model_license)
696
  df['name'] = df['name'].replace(model_names)
697
  for i in range(len(df)):
 
727
  return '#'+ rank
728
 
729
  df['order'] = [assign_medal(i, not reveal_prelim and len(df) > 2) for i in range(len(df))]
730
+ # fetch top_five
731
+ for orig_name in df['orig_name']:
732
+ if reveal_prelim and len(top_five) < 5:
733
+ top_five.append(orig_name)
734
+
735
+ print(top_five)
736
  df = df[['order', 'name', 'score', 'votes']]
737
  return df
738
 
 
947
 
948
  # forced model: your TTS model versus The World!!!
949
  # mdl1 = 'Pendrokar/xVASynth'
950
+
951
+ # scrutinize the top five by always picking one of them
952
+ if (len(top_five) >= 5):
953
+ mdl1 = random.sample(top_five, 1)[0]
954
+ vsModels = dict(AVAILABLE_MODELS)
955
+ del vsModels[mdl1]
956
+ # randomize position of the forced model
957
+ mdl2 = random.sample(list(vsModels.keys()), 1)
958
+ # forced random
959
+ mdl1, mdl2 = random.sample(list([mdl1, mdl2[0]]), 2)
960
+ else:
961
+ # actual random
962
+ mdl1, mdl2 = random.sample(list(AVAILABLE_MODELS.keys()), 2)
963
+
964
  print("[debug] Using", mdl1, mdl2)
965
  def predict_and_update_result(text, model, result_storage, request:gr.Request):
966