import gradio as gr import random import os import shutil import pandas as pd import sqlite3 from datasets import load_dataset import threading import time from huggingface_hub import HfApi DESCR = """ # TTS Arena Vote on different speech synthesis models! """.strip() INSTR = """ ## Instructions * Listen to two anonymous models * Vote on which one is more natural and realistic, with better prosody and intonation * If there's a tie, click Skip **When you're ready to begin, click the Start button below!** The model names will be revealed once you vote. """.strip() request = '' if os.getenv('HF_ID'): request = f""" ### Request Model Please fill out [this form](https://huggingface.co/spaces/{os.getenv('HF_ID')}/discussions/new?title=%5BModel+Request%5D+&description=%23%23%20Model%20Request%0A%0A%2A%2AModel%20website%2Fpaper%20%28if%20applicable%29%2A%2A%3A%0A%2A%2AModel%20available%20on%2A%2A%3A%20%28coqui%7CHF%20pipeline%7Ccustom%20code%29%0A%2A%2AWhy%20do%20you%20want%20this%20model%20added%3F%2A%2A%0A%2A%2AComments%3A%2A%2A) to request a model. """ ABOUT = f""" ## About The TTS Arena is a project created to evaluate leading speech synthesis models. It is inspired by the [Chatbot Arena](https://chat.lmsys.org/) by LMSYS. ### How it Works First, vote on two samples of text-to-speech models. The models that synthesized the samples are not revealed to mitigate bias. As you vote, the leaderboard will be updated based on votes. We calculate a score for each model using a method similar to the [Elo system](https://en.wikipedia.org/wiki/Elo_rating_system). ### Motivation Recently, many new open-access speech synthesis models have been made available to the community. However, there is no standardized evaluation or benchmark to measure the quality and naturalness of these models. The TTS Arena is an attempt to benchmark these models and find the highest-quality models available to the community. {request} """.strip() LDESC = """ ## Leaderboard A list of the models, based on how highly they are ranked! """.strip() dataset = load_dataset("ttseval/tts-arena-new", token=os.getenv('HF_TOKEN')) def reload_db(): global dataset dataset = load_dataset("ttseval/tts-arena-new", token=os.getenv('HF_TOKEN')) return 'Reload Dataset' def del_db(txt): if not txt.lower() == 'delete db': raise gr.Error('You did not enter "delete db"') api = HfApi( token=os.getenv('HF_TOKEN') ) os.remove('database.db') create_db() api.delete_file( path_in_repo='database.db', repo_id=os.getenv('DATASET_ID'), repo_type='dataset' ) return 'Delete DB' theme = gr.themes.Base( font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'], ) model_names = { 'styletts2': 'StyleTTS 2', 'tacotron': 'Tacotron', 'tacotronph': 'Tacotron Phoneme', 'tacotrondca': 'Tacotron DCA', 'speedyspeech': 'Speedy Speech', 'overflow': 'Overflow TTS', 'vits': 'VITS', 'vitsneon': 'VITS Neon', 'neuralhmm': 'Neural HMM', 'glow': 'Glow TTS', 'fastpitch': 'FastPitch', 'jenny': 'Jenny', 'tortoise': 'Tortoise TTS', 'xtts2': 'Coqui XTTSv2', 'xtts': 'Coqui XTTS', 'openvoice': 'MyShell OpenVoice', 'elevenlabs': 'ElevenLabs', 'openai': 'OpenAI', 'hierspeech': 'HierSpeech++', 'pheme': 'PolyAI Pheme', 'speecht5': 'SpeechT5', } model_licenses = { 'styletts2': 'MIT', 'tacotron': 'BSD-3', 'tacotronph': 'BSD-3', 'tacotrondca': 'BSD-3', 'speedyspeech': 'BSD-3', 'overflow': 'MIT', 'vits': 'MIT', 'openvoice': 'MIT', 'vitsneon': 'BSD-3', 'neuralhmm': 'MIT', 'glow': 'MIT', 'fastpitch': 'Apache 2.0', 'jenny': 'Jenny License', 'tortoise': 'Apache 2.0', 'xtts2': 'CPML (NC)', 'xtts': 'CPML (NC)', 'elevenlabs': 'Proprietary', 'openai': 'Proprietary', 'hierspeech': 'MIT', 'pheme': 'CC-BY', 'speecht5': 'MIT', } # def get_random_split(existing_split=None): # choice = random.choice(list(dataset.keys())) # if existing_split and choice == existing_split: # return get_random_split(choice) # else: # return choice def get_db(): return sqlite3.connect('database.db') def create_db(): conn = get_db() cursor = conn.cursor() cursor.execute(''' CREATE TABLE IF NOT EXISTS model ( name TEXT UNIQUE, upvote INTEGER, downvote INTEGER ); ''') cursor.execute(''' CREATE TABLE IF NOT EXISTS vote ( id INTEGER PRIMARY KEY AUTOINCREMENT, username TEXT, model TEXT, vote INTEGER ); ''') def get_data(): conn = get_db() cursor = conn.cursor() cursor.execute('SELECT name, upvote, downvote FROM model WHERE (upvote + downvote) > 5') data = cursor.fetchall() df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote']) df['license'] = df['name'].replace(model_licenses) df['name'] = df['name'].replace(model_names) df['votes'] = df['upvote'] + df['downvote'] # df['score'] = round((df['upvote'] / df['votes']) * 100, 2) # Percentage score ## ELO SCORE df['score'] = 1200 for i in range(len(df)): for j in range(len(df)): if i != j: expected_a = 1 / (1 + 10 ** ((df['score'][j] - df['score'][i]) / 400)) expected_b = 1 / (1 + 10 ** ((df['score'][i] - df['score'][j]) / 400)) actual_a = df['upvote'][i] / df['votes'][i] actual_b = df['upvote'][j] / df['votes'][j] df.at[i, 'score'] += 32 * (actual_a - expected_a) df.at[j, 'score'] += 32 * (actual_b - expected_b) df['score'] = round(df['score']) ## ELO SCORE df = df.sort_values(by='score', ascending=False) df['order'] = ['#' + str(i + 1) for i in range(len(df))] # df = df[['name', 'score', 'upvote', 'votes']] df = df[['order', 'name', 'score', 'license', 'votes']] return df # def get_random_splits(): # choice1 = get_random_split() # choice2 = get_random_split(choice1) # return (choice1, choice2) def upvote_model(model, uname): conn = get_db() cursor = conn.cursor() cursor.execute('UPDATE model SET upvote = upvote + 1 WHERE name = ?', (model,)) if cursor.rowcount == 0: cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 1, 0)', (model,)) cursor.execute('INSERT INTO vote (username, model, vote) VALUES (?, ?, ?)', (uname, model, 1,)) conn.commit() cursor.close() def downvote_model(model, uname): conn = get_db() cursor = conn.cursor() cursor.execute('UPDATE model SET downvote = downvote + 1 WHERE name = ?', (model,)) if cursor.rowcount == 0: cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 0, 1)', (model,)) cursor.execute('INSERT INTO vote (username, model, vote) VALUES (?, ?, ?)', (uname, model, -1,)) conn.commit() cursor.close() def a_is_better(model1, model2, profile: gr.OAuthProfile | None): if model1 and model2: upvote_model(model1, profile.username) downvote_model(model2, profile.username) return reload(model1, model2) def b_is_better(model1, model2, profile: gr.OAuthProfile | None): if model1 and model2: upvote_model(model2, profile.username) downvote_model(model1, profile.username) return reload(model1, model2) def both_bad(model1, model2, profile: gr.OAuthProfile | None): if model1 and model2: downvote_model(model1, profile.username) downvote_model(model2, profile.username) return reload(model1, model2) def both_good(model1, model2, profile: gr.OAuthProfile | None): if model1 and model2: upvote_model(model1, profile.username) upvote_model(model2, profile.username) return reload(model1, model2) def reload(chosenmodel1=None, chosenmodel2=None): # Select random splits row = random.choice(list(dataset['train'])) options = list(random.choice(list(dataset['train'])).keys()) split1, split2 = random.sample(options, 2) choice1, choice2 = (row[split1], row[split2]) if chosenmodel1 in model_names: chosenmodel1 = model_names[chosenmodel1] if chosenmodel2 in model_names: chosenmodel2 = model_names[chosenmodel2] out = [ (choice1['sampling_rate'], choice1['array']), (choice2['sampling_rate'], choice2['array']), split1, split2 ] if chosenmodel1: out.append(f'This model was {chosenmodel1}') if chosenmodel2: out.append(f'This model was {chosenmodel2}') return out with gr.Blocks() as leaderboard: gr.Markdown(LDESC) # df = gr.Dataframe(interactive=False, value=get_data()) df = gr.Dataframe(interactive=False, min_width=0, wrap=True, column_widths=[30, 200, 50, 75, 50]) reloadbtn = gr.Button("Refresh") leaderboard.load(get_data, outputs=[df]) reloadbtn.click(get_data, outputs=[df]) gr.Markdown("DISCLAIMER: The licenses listed may not be accurate or up to date, you are responsible for checking the licenses before using the models. Also note that some models may have additional usage restrictions.") with gr.Blocks() as vote: gr.Markdown(INSTR) gr.LoginButton() with gr.Row(): gr.HTML('