Spaces:
Running
on
Zero
Running
on
Zero
File size: 9,604 Bytes
635f007 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
import torch
from torch import nn
import torch.nn.functional as F
import torchaudio
from transformers import AutoModel
class SpectralConvergengeLoss(torch.nn.Module):
"""Spectral convergence loss module."""
def __init__(self):
"""Initilize spectral convergence loss module."""
super(SpectralConvergengeLoss, self).__init__()
def forward(self, x_mag, y_mag):
"""Calculate forward propagation.
Args:
x_mag (Tensor): Magnitude spectrogram of predicted signal (B, #frames, #freq_bins).
y_mag (Tensor): Magnitude spectrogram of groundtruth signal (B, #frames, #freq_bins).
Returns:
Tensor: Spectral convergence loss value.
"""
return torch.norm(y_mag - x_mag, p=1) / torch.norm(y_mag, p=1)
class STFTLoss(torch.nn.Module):
"""STFT loss module."""
def __init__(
self, fft_size=1024, shift_size=120, win_length=600, window=torch.hann_window
):
"""Initialize STFT loss module."""
super(STFTLoss, self).__init__()
self.fft_size = fft_size
self.shift_size = shift_size
self.win_length = win_length
self.to_mel = torchaudio.transforms.MelSpectrogram(
sample_rate=24000,
n_fft=fft_size,
win_length=win_length,
hop_length=shift_size,
window_fn=window,
)
self.spectral_convergenge_loss = SpectralConvergengeLoss()
def forward(self, x, y):
"""Calculate forward propagation.
Args:
x (Tensor): Predicted signal (B, T).
y (Tensor): Groundtruth signal (B, T).
Returns:
Tensor: Spectral convergence loss value.
Tensor: Log STFT magnitude loss value.
"""
x_mag = self.to_mel(x)
mean, std = -4, 4
x_mag = (torch.log(1e-5 + x_mag) - mean) / std
y_mag = self.to_mel(y)
mean, std = -4, 4
y_mag = (torch.log(1e-5 + y_mag) - mean) / std
sc_loss = self.spectral_convergenge_loss(x_mag, y_mag)
return sc_loss
class MultiResolutionSTFTLoss(torch.nn.Module):
"""Multi resolution STFT loss module."""
def __init__(
self,
fft_sizes=[1024, 2048, 512],
hop_sizes=[120, 240, 50],
win_lengths=[600, 1200, 240],
window=torch.hann_window,
):
"""Initialize Multi resolution STFT loss module.
Args:
fft_sizes (list): List of FFT sizes.
hop_sizes (list): List of hop sizes.
win_lengths (list): List of window lengths.
window (str): Window function type.
"""
super(MultiResolutionSTFTLoss, self).__init__()
assert len(fft_sizes) == len(hop_sizes) == len(win_lengths)
self.stft_losses = torch.nn.ModuleList()
for fs, ss, wl in zip(fft_sizes, hop_sizes, win_lengths):
self.stft_losses += [STFTLoss(fs, ss, wl, window)]
def forward(self, x, y):
"""Calculate forward propagation.
Args:
x (Tensor): Predicted signal (B, T).
y (Tensor): Groundtruth signal (B, T).
Returns:
Tensor: Multi resolution spectral convergence loss value.
Tensor: Multi resolution log STFT magnitude loss value.
"""
sc_loss = 0.0
for f in self.stft_losses:
sc_l = f(x, y)
sc_loss += sc_l
sc_loss /= len(self.stft_losses)
return sc_loss
def feature_loss(fmap_r, fmap_g):
loss = 0
for dr, dg in zip(fmap_r, fmap_g):
for rl, gl in zip(dr, dg):
loss += torch.mean(torch.abs(rl - gl))
return loss * 2
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
r_losses = []
g_losses = []
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
r_loss = torch.mean((1 - dr) ** 2)
g_loss = torch.mean(dg**2)
loss += r_loss + g_loss
r_losses.append(r_loss.item())
g_losses.append(g_loss.item())
return loss, r_losses, g_losses
def generator_loss(disc_outputs):
loss = 0
gen_losses = []
for dg in disc_outputs:
l = torch.mean((1 - dg) ** 2)
gen_losses.append(l)
loss += l
return loss, gen_losses
""" https://dl.acm.org/doi/abs/10.1145/3573834.3574506 """
def discriminator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
tau = 0.04
m_DG = torch.median((dr - dg))
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
loss += tau - F.relu(tau - L_rel)
return loss
def generator_TPRLS_loss(disc_real_outputs, disc_generated_outputs):
loss = 0
for dg, dr in zip(disc_real_outputs, disc_generated_outputs):
tau = 0.04
m_DG = torch.median((dr - dg))
L_rel = torch.mean((((dr - dg) - m_DG) ** 2)[dr < dg + m_DG])
loss += tau - F.relu(tau - L_rel)
return loss
class GeneratorLoss(torch.nn.Module):
def __init__(self, mpd, msd):
super(GeneratorLoss, self).__init__()
self.mpd = mpd
self.msd = msd
def forward(self, y, y_hat):
y_df_hat_r, y_df_hat_g, fmap_f_r, fmap_f_g = self.mpd(y, y_hat)
y_ds_hat_r, y_ds_hat_g, fmap_s_r, fmap_s_g = self.msd(y, y_hat)
loss_fm_f = feature_loss(fmap_f_r, fmap_f_g)
loss_fm_s = feature_loss(fmap_s_r, fmap_s_g)
loss_gen_f, losses_gen_f = generator_loss(y_df_hat_g)
loss_gen_s, losses_gen_s = generator_loss(y_ds_hat_g)
loss_rel = generator_TPRLS_loss(y_df_hat_r, y_df_hat_g) + generator_TPRLS_loss(
y_ds_hat_r, y_ds_hat_g
)
loss_gen_all = loss_gen_s + loss_gen_f + loss_fm_s + loss_fm_f + loss_rel
return loss_gen_all.mean()
class DiscriminatorLoss(torch.nn.Module):
def __init__(self, mpd, msd):
super(DiscriminatorLoss, self).__init__()
self.mpd = mpd
self.msd = msd
def forward(self, y, y_hat):
# MPD
y_df_hat_r, y_df_hat_g, _, _ = self.mpd(y, y_hat)
loss_disc_f, losses_disc_f_r, losses_disc_f_g = discriminator_loss(
y_df_hat_r, y_df_hat_g
)
# MSD
y_ds_hat_r, y_ds_hat_g, _, _ = self.msd(y, y_hat)
loss_disc_s, losses_disc_s_r, losses_disc_s_g = discriminator_loss(
y_ds_hat_r, y_ds_hat_g
)
loss_rel = discriminator_TPRLS_loss(
y_df_hat_r, y_df_hat_g
) + discriminator_TPRLS_loss(y_ds_hat_r, y_ds_hat_g)
d_loss = loss_disc_s + loss_disc_f + loss_rel
return d_loss.mean()
class WavLMLoss(torch.nn.Module):
def __init__(self, model, wd, model_sr, slm_sr=16000):
super(WavLMLoss, self).__init__()
self.wavlm = AutoModel.from_pretrained(model)
self.wd = wd
self.resample = torchaudio.transforms.Resample(model_sr, slm_sr)
def forward(self, wav, y_rec):
with torch.no_grad():
wav_16 = self.resample(wav)
wav_embeddings = self.wavlm(
input_values=wav_16, output_hidden_states=True
).hidden_states
y_rec_16 = self.resample(y_rec)
y_rec_embeddings = self.wavlm(
input_values=y_rec_16.squeeze(), output_hidden_states=True
).hidden_states
floss = 0
for er, eg in zip(wav_embeddings, y_rec_embeddings):
floss += torch.mean(torch.abs(er - eg))
return floss.mean()
def generator(self, y_rec):
y_rec_16 = self.resample(y_rec)
y_rec_embeddings = self.wavlm(
input_values=y_rec_16, output_hidden_states=True
).hidden_states
y_rec_embeddings = (
torch.stack(y_rec_embeddings, dim=1)
.transpose(-1, -2)
.flatten(start_dim=1, end_dim=2)
)
y_df_hat_g = self.wd(y_rec_embeddings)
loss_gen = torch.mean((1 - y_df_hat_g) ** 2)
return loss_gen
def discriminator(self, wav, y_rec):
with torch.no_grad():
wav_16 = self.resample(wav)
wav_embeddings = self.wavlm(
input_values=wav_16, output_hidden_states=True
).hidden_states
y_rec_16 = self.resample(y_rec)
y_rec_embeddings = self.wavlm(
input_values=y_rec_16, output_hidden_states=True
).hidden_states
y_embeddings = (
torch.stack(wav_embeddings, dim=1)
.transpose(-1, -2)
.flatten(start_dim=1, end_dim=2)
)
y_rec_embeddings = (
torch.stack(y_rec_embeddings, dim=1)
.transpose(-1, -2)
.flatten(start_dim=1, end_dim=2)
)
y_d_rs = self.wd(y_embeddings)
y_d_gs = self.wd(y_rec_embeddings)
y_df_hat_r, y_df_hat_g = y_d_rs, y_d_gs
r_loss = torch.mean((1 - y_df_hat_r) ** 2)
g_loss = torch.mean((y_df_hat_g) ** 2)
loss_disc_f = r_loss + g_loss
return loss_disc_f.mean()
def discriminator_forward(self, wav):
with torch.no_grad():
wav_16 = self.resample(wav)
wav_embeddings = self.wavlm(
input_values=wav_16, output_hidden_states=True
).hidden_states
y_embeddings = (
torch.stack(wav_embeddings, dim=1)
.transpose(-1, -2)
.flatten(start_dim=1, end_dim=2)
)
y_d_rs = self.wd(y_embeddings)
return y_d_rs
|