Spaces:
Running
on
Zero
Running
on
Zero
from monotonic_align import maximum_path | |
from monotonic_align import mask_from_lens | |
from monotonic_align.core import maximum_path_c | |
import numpy as np | |
import torch | |
import copy | |
from torch import nn | |
import torch.nn.functional as F | |
import torchaudio | |
import librosa | |
import matplotlib.pyplot as plt | |
from munch import Munch | |
def maximum_path(neg_cent, mask): | |
"""Cython optimized version. | |
neg_cent: [b, t_t, t_s] | |
mask: [b, t_t, t_s] | |
""" | |
device = neg_cent.device | |
dtype = neg_cent.dtype | |
neg_cent = np.ascontiguousarray(neg_cent.data.cpu().numpy().astype(np.float32)) | |
path = np.ascontiguousarray(np.zeros(neg_cent.shape, dtype=np.int32)) | |
t_t_max = np.ascontiguousarray( | |
mask.sum(1)[:, 0].data.cpu().numpy().astype(np.int32) | |
) | |
t_s_max = np.ascontiguousarray( | |
mask.sum(2)[:, 0].data.cpu().numpy().astype(np.int32) | |
) | |
maximum_path_c(path, neg_cent, t_t_max, t_s_max) | |
return torch.from_numpy(path).to(device=device, dtype=dtype) | |
def get_data_path_list(train_path=None, val_path=None): | |
if train_path is None: | |
train_path = "Data/train_list.txt" | |
if val_path is None: | |
val_path = "Data/val_list.txt" | |
with open(train_path, "r", encoding="utf-8", errors="ignore") as f: | |
train_list = f.readlines() | |
with open(val_path, "r", encoding="utf-8", errors="ignore") as f: | |
val_list = f.readlines() | |
return train_list, val_list | |
def length_to_mask(lengths): | |
mask = ( | |
torch.arange(lengths.max()) | |
.unsqueeze(0) | |
.expand(lengths.shape[0], -1) | |
.type_as(lengths) | |
) | |
mask = torch.gt(mask + 1, lengths.unsqueeze(1)) | |
return mask | |
# for norm consistency loss | |
def log_norm(x, mean=-4, std=4, dim=2): | |
""" | |
normalized log mel -> mel -> norm -> log(norm) | |
""" | |
x = torch.log(torch.exp(x * std + mean).norm(dim=dim)) | |
return x | |
def get_image(arrs): | |
plt.switch_backend("agg") | |
fig = plt.figure() | |
ax = plt.gca() | |
ax.imshow(arrs) | |
return fig | |
def recursive_munch(d): | |
if isinstance(d, dict): | |
return Munch((k, recursive_munch(v)) for k, v in d.items()) | |
elif isinstance(d, list): | |
return [recursive_munch(v) for v in d] | |
else: | |
return d | |
def log_print(message, logger): | |
logger.info(message) | |
print(message) | |