Spaces:
Build error
Build error
File size: 18,088 Bytes
3e62089 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 |
# import whisper
from faster_whisper import WhisperModel
import datetime
import subprocess
import gradio as gr
from pathlib import Path
import pandas as pd
import re
import time
import os
import numpy as np
from sklearn.cluster import AgglomerativeClustering
from sklearn.metrics import silhouette_score
from pytube import YouTube
import yt_dlp
import torch
import pyannote.audio
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
from pyannote.audio import Audio
from pyannote.core import Segment
from gpuinfo import GPUInfo
import wave
import contextlib
from transformers import pipeline
import psutil
whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
source_languages = {
"en": "English",
"zh": "Chinese",
"de": "German",
"es": "Spanish",
"ru": "Russian",
"ko": "Korean",
"fr": "French",
"ja": "Japanese",
"pt": "Portuguese",
"tr": "Turkish",
"pl": "Polish",
"ca": "Catalan",
"nl": "Dutch",
"ar": "Arabic",
"sv": "Swedish",
"it": "Italian",
"id": "Indonesian",
"hi": "Hindi",
"fi": "Finnish",
"vi": "Vietnamese",
"he": "Hebrew",
"uk": "Ukrainian",
"el": "Greek",
"ms": "Malay",
"cs": "Czech",
"ro": "Romanian",
"da": "Danish",
"hu": "Hungarian",
"ta": "Tamil",
"no": "Norwegian",
"th": "Thai",
"ur": "Urdu",
"hr": "Croatian",
"bg": "Bulgarian",
"lt": "Lithuanian",
"la": "Latin",
"mi": "Maori",
"ml": "Malayalam",
"cy": "Welsh",
"sk": "Slovak",
"te": "Telugu",
"fa": "Persian",
"lv": "Latvian",
"bn": "Bengali",
"sr": "Serbian",
"az": "Azerbaijani",
"sl": "Slovenian",
"kn": "Kannada",
"et": "Estonian",
"mk": "Macedonian",
"br": "Breton",
"eu": "Basque",
"is": "Icelandic",
"hy": "Armenian",
"ne": "Nepali",
"mn": "Mongolian",
"bs": "Bosnian",
"kk": "Kazakh",
"sq": "Albanian",
"sw": "Swahili",
"gl": "Galician",
"mr": "Marathi",
"pa": "Punjabi",
"si": "Sinhala",
"km": "Khmer",
"sn": "Shona",
"yo": "Yoruba",
"so": "Somali",
"af": "Afrikaans",
"oc": "Occitan",
"ka": "Georgian",
"be": "Belarusian",
"tg": "Tajik",
"sd": "Sindhi",
"gu": "Gujarati",
"am": "Amharic",
"yi": "Yiddish",
"lo": "Lao",
"uz": "Uzbek",
"fo": "Faroese",
"ht": "Haitian creole",
"ps": "Pashto",
"tk": "Turkmen",
"nn": "Nynorsk",
"mt": "Maltese",
"sa": "Sanskrit",
"lb": "Luxembourgish",
"my": "Myanmar",
"bo": "Tibetan",
"tl": "Tagalog",
"mg": "Malagasy",
"as": "Assamese",
"tt": "Tatar",
"haw": "Hawaiian",
"ln": "Lingala",
"ha": "Hausa",
"ba": "Bashkir",
"jw": "Javanese",
"su": "Sundanese",
}
source_language_list = [key[0] for key in source_languages.items()]
MODEL_NAME = "vumichien/whisper-medium-jp"
lang = "ja"
device = 0 if torch.cuda.is_available() else "cpu"
pipe = pipeline(
task="automatic-speech-recognition",
model=MODEL_NAME,
chunk_length_s=30,
device=device,
)
os.makedirs('output', exist_ok=True)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
embedding_model = PretrainedSpeakerEmbedding(
"speechbrain/spkrec-ecapa-voxceleb",
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
def transcribe(microphone, file_upload):
warn_output = ""
if (microphone is not None) and (file_upload is not None):
warn_output = (
"WARNING: You've uploaded an audio file and used the microphone. "
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
)
elif (microphone is None) and (file_upload is None):
return "ERROR: You have to either use the microphone or upload an audio file"
file = microphone if microphone is not None else file_upload
text = pipe(file)["text"]
return warn_output + text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def yt_transcribe(yt_url):
# yt = YouTube(yt_url)
# html_embed_str = _return_yt_html_embed(yt_url)
# stream = yt.streams.filter(only_audio=True)[0]
# stream.download(filename="audio.mp3")
ydl_opts = {
'format': 'bestvideo*+bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl':'audio.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([yt_url])
text = pipe("audio.mp3")["text"]
return html_embed_str, text
def convert_time(secs):
return datetime.timedelta(seconds=round(secs))
def get_youtube(video_url):
# yt = YouTube(video_url)
# abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
ydl_opts = {
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(video_url, download=False)
abs_video_path = ydl.prepare_filename(info)
ydl.process_info(info)
print("Success download video")
print(abs_video_path)
return abs_video_path
def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers):
"""
# Transcribe youtube link using OpenAI Whisper
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
2. Generating speaker embeddings for each segments.
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
"""
# model = whisper.load_model(whisper_model)
# model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
model = WhisperModel(whisper_model, compute_type="int8")
time_start = time.time()
if(video_file_path == None):
raise ValueError("Error no video input")
print(video_file_path)
try:
# Read and convert youtube video
_,file_ending = os.path.splitext(f'{video_file_path}')
print(f'file enging is {file_ending}')
audio_file = video_file_path.replace(file_ending, ".wav")
print("starting conversion to wav")
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
# Get duration
with contextlib.closing(wave.open(audio_file,'r')) as f:
frames = f.getnframes()
rate = f.getframerate()
duration = frames / float(rate)
print(f"conversion to wav ready, duration of audio file: {duration}")
# Transcribe audio
options = dict(language=selected_source_lang, beam_size=5, best_of=5)
transcribe_options = dict(task="transcribe", **options)
segments_raw, info = model.transcribe(audio_file, **transcribe_options)
# Convert back to original openai format
segments = []
i = 0
for segment_chunk in segments_raw:
chunk = {}
chunk["start"] = segment_chunk.start
chunk["end"] = segment_chunk.end
chunk["text"] = segment_chunk.text
segments.append(chunk)
i += 1
print("transcribe audio done with fast whisper")
except Exception as e:
raise RuntimeError("Error converting video to audio")
try:
# Create embedding
def segment_embedding(segment):
audio = Audio()
start = segment["start"]
# Whisper overshoots the end timestamp in the last segment
end = min(duration, segment["end"])
clip = Segment(start, end)
waveform, sample_rate = audio.crop(audio_file, clip)
return embedding_model(waveform[None])
embeddings = np.zeros(shape=(len(segments), 192))
for i, segment in enumerate(segments):
embeddings[i] = segment_embedding(segment)
embeddings = np.nan_to_num(embeddings)
print(f'Embedding shape: {embeddings.shape}')
if num_speakers == 0:
# Find the best number of speakers
score_num_speakers = {}
for num_speakers in range(2, 10+1):
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
score_num_speakers[num_speakers] = score
best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
else:
best_num_speaker = num_speakers
# Assign speaker label
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
labels = clustering.labels_
for i in range(len(segments)):
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
# Make output
objects = {
'Start' : [],
'End': [],
'Speaker': [],
'Text': []
}
text = ''
for (i, segment) in enumerate(segments):
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
objects['Start'].append(str(convert_time(segment["start"])))
objects['Speaker'].append(segment["speaker"])
if i != 0:
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
text = ''
text += segment["text"] + ' '
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
objects['Text'].append(text)
time_end = time.time()
time_diff = time_end - time_start
memory = psutil.virtual_memory()
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
system_info = f"""
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
*Processing time: {time_diff:.5} seconds.*
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
"""
save_path = "output/transcript_result.csv"
df_results = pd.DataFrame(objects)
df_results.to_csv(save_path)
return df_results, system_info, save_path
except Exception as e:
raise RuntimeError("Error Running inference with local model", e)
# ---- Gradio Layout -----
# Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles
video_in = gr.Video(label="Video file", mirror_webcam=False)
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
memory = psutil.virtual_memory()
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="en", label="Spoken language in video", interactive=True)
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)
number_speakers = gr.Number(precision=0, value=0, label="Input number of speakers for better results. If value=0, model will automatic find the best number of speakers", interactive=True)
system_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
download_transcript = gr.File(label="Download transcript")
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
title = "Whisper speaker diarization"
demo = gr.Blocks(title=title)
demo.encrypt = False
with demo:
with gr.Tab("Whisper speaker diarization"):
gr.Markdown('''
<div>
<h1 style='text-align: center'>Whisper speaker diarization</h1>
This space uses Whisper models from <a href='https://github.com/openai/whisper' target='_blank'><b>OpenAI</b></a> with <a href='https://github.com/guillaumekln/faster-whisper' target='_blank'><b>CTranslate2</b></a> which is a fast inference engine for Transformer models to recognize the speech (4 times faster than original openai model with same accuracy)
and ECAPA-TDNN model from <a href='https://github.com/speechbrain/speechbrain' target='_blank'><b>SpeechBrain</b></a> to encode and clasify speakers
</div>
''')
with gr.Row():
gr.Markdown('''
### Transcribe youtube link using OpenAI Whisper
##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
##### 2. Generating speaker embeddings for each segments.
##### 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
''')
with gr.Row():
gr.Markdown('''
### You can test by following examples:
''')
examples = gr.Examples(examples=
[ "https://www.youtube.com/watch?v=j7BfEzAFuYc&t=32s",
"https://www.youtube.com/watch?v=-UX0X45sYe4",
"https://www.youtube.com/watch?v=7minSgqi-Gw"],
label="Examples", inputs=[youtube_url_in])
with gr.Row():
with gr.Column():
youtube_url_in.render()
download_youtube_btn = gr.Button("Download Youtube video")
download_youtube_btn.click(get_youtube, [youtube_url_in], [
video_in])
print(video_in)
with gr.Row():
with gr.Column():
video_in.render()
with gr.Column():
gr.Markdown('''
##### Here you can start the transcription process.
##### Please select the source language for transcription.
##### You can select a range of assumed numbers of speakers.
''')
selected_source_lang.render()
selected_whisper_model.render()
number_speakers.render()
transcribe_btn = gr.Button("Transcribe audio and diarization")
transcribe_btn.click(speech_to_text,
[video_in, selected_source_lang, selected_whisper_model, number_speakers],
[transcription_df, system_info, download_transcript]
)
with gr.Row():
gr.Markdown('''
##### Here you will get transcription output
##### ''')
with gr.Row():
with gr.Column():
download_transcript.render()
transcription_df.render()
system_info.render()
gr.Markdown('''<center><img src='https://visitor-badge.glitch.me/badge?page_id=WhisperDiarizationSpeakers' alt='visitor badge'><a href="https://opensource.org/licenses/Apache-2.0"><img src='https://img.shields.io/badge/License-Apache_2.0-blue.svg' alt='License: Apache 2.0'></center>''')
with gr.Tab("Whisper Transcribe Japanese Audio"):
gr.Markdown(f'''
<div>
<h1 style='text-align: center'>Whisper Transcribe Japanese Audio</h1>
</div>
Transcribe long-form microphone or audio inputs with the click of a button! The fine-tuned
checkpoint <a href='https://huggingface.co/{MODEL_NAME}' target='_blank'><b>{MODEL_NAME}</b></a> to transcribe audio files of arbitrary length.
''')
microphone = gr.inputs.Audio(source="microphone", type="filepath", optional=True)
upload = gr.inputs.Audio(source="upload", type="filepath", optional=True)
transcribe_btn = gr.Button("Transcribe Audio")
text_output = gr.Textbox()
with gr.Row():
gr.Markdown('''
### You can test by following examples:
''')
examples = gr.Examples(examples=
[ "sample1.wav",
"sample2.wav",
],
label="Examples", inputs=[upload])
transcribe_btn.click(transcribe, [microphone, upload], outputs=text_output)
with gr.Tab("Whisper Transcribe Japanese YouTube"):
gr.Markdown(f'''
<div>
<h1 style='text-align: center'>Whisper Transcribe Japanese YouTube</h1>
</div>
Transcribe long-form YouTube videos with the click of a button! The fine-tuned checkpoint:
<a href='https://huggingface.co/{MODEL_NAME}' target='_blank'><b>{MODEL_NAME}</b></a> to transcribe audio files of arbitrary length.
''')
youtube_link = gr.Textbox(label="Youtube url", lines=1, interactive=True)
yt_transcribe_btn = gr.Button("Transcribe YouTube")
text_output2 = gr.Textbox()
html_output = gr.Markdown()
yt_transcribe_btn.click(yt_transcribe, [youtube_link], outputs=[html_output, text_output2])
demo.launch(debug=True) |