Persival123 commited on
Commit
f7634d9
1 Parent(s): bad0c4e

Delete app (1).py

Browse files
Files changed (1) hide show
  1. app (1).py +0 -421
app (1).py DELETED
@@ -1,421 +0,0 @@
1
- # import whisper
2
- from faster_whisper import WhisperModel
3
- import datetime
4
- import subprocess
5
- import gradio as gr
6
- from pathlib import Path
7
- import pandas as pd
8
- import re
9
- import time
10
- import os
11
- import numpy as np
12
- from sklearn.cluster import AgglomerativeClustering
13
- from sklearn.metrics import silhouette_score
14
-
15
- from pytube import YouTube
16
- import yt_dlp
17
- import torch
18
- import pyannote.audio
19
- from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
20
- from pyannote.audio import Audio
21
- from pyannote.core import Segment
22
-
23
- from gpuinfo import GPUInfo
24
-
25
- import wave
26
- import contextlib
27
- from transformers import pipeline
28
- import psutil
29
-
30
- whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
31
- source_languages = {
32
- "en": "English",
33
- "zh": "Chinese",
34
- "de": "German",
35
- "es": "Spanish",
36
- "ru": "Russian",
37
- "ko": "Korean",
38
- "fr": "French",
39
- "ja": "Japanese",
40
- "pt": "Portuguese",
41
- "tr": "Turkish",
42
- "pl": "Polish",
43
- "ca": "Catalan",
44
- "nl": "Dutch",
45
- "ar": "Arabic",
46
- "sv": "Swedish",
47
- "it": "Italian",
48
- "id": "Indonesian",
49
- "hi": "Hindi",
50
- "fi": "Finnish",
51
- "vi": "Vietnamese",
52
- "he": "Hebrew",
53
- "uk": "Ukrainian",
54
- "el": "Greek",
55
- "ms": "Malay",
56
- "cs": "Czech",
57
- "ro": "Romanian",
58
- "da": "Danish",
59
- "hu": "Hungarian",
60
- "ta": "Tamil",
61
- "no": "Norwegian",
62
- "th": "Thai",
63
- "ur": "Urdu",
64
- "hr": "Croatian",
65
- "bg": "Bulgarian",
66
- "lt": "Lithuanian",
67
- "la": "Latin",
68
- "mi": "Maori",
69
- "ml": "Malayalam",
70
- "cy": "Welsh",
71
- "sk": "Slovak",
72
- "te": "Telugu",
73
- "fa": "Persian",
74
- "lv": "Latvian",
75
- "bn": "Bengali",
76
- "sr": "Serbian",
77
- "az": "Azerbaijani",
78
- "sl": "Slovenian",
79
- "kn": "Kannada",
80
- "et": "Estonian",
81
- "mk": "Macedonian",
82
- "br": "Breton",
83
- "eu": "Basque",
84
- "is": "Icelandic",
85
- "hy": "Armenian",
86
- "ne": "Nepali",
87
- "mn": "Mongolian",
88
- "bs": "Bosnian",
89
- "kk": "Kazakh",
90
- "sq": "Albanian",
91
- "sw": "Swahili",
92
- "gl": "Galician",
93
- "mr": "Marathi",
94
- "pa": "Punjabi",
95
- "si": "Sinhala",
96
- "km": "Khmer",
97
- "sn": "Shona",
98
- "yo": "Yoruba",
99
- "so": "Somali",
100
- "af": "Afrikaans",
101
- "oc": "Occitan",
102
- "ka": "Georgian",
103
- "be": "Belarusian",
104
- "tg": "Tajik",
105
- "sd": "Sindhi",
106
- "gu": "Gujarati",
107
- "am": "Amharic",
108
- "yi": "Yiddish",
109
- "lo": "Lao",
110
- "uz": "Uzbek",
111
- "fo": "Faroese",
112
- "ht": "Haitian creole",
113
- "ps": "Pashto",
114
- "tk": "Turkmen",
115
- "nn": "Nynorsk",
116
- "mt": "Maltese",
117
- "sa": "Sanskrit",
118
- "lb": "Luxembourgish",
119
- "my": "Myanmar",
120
- "bo": "Tibetan",
121
- "tl": "Tagalog",
122
- "mg": "Malagasy",
123
- "as": "Assamese",
124
- "tt": "Tatar",
125
- "haw": "Hawaiian",
126
- "ln": "Lingala",
127
- "ha": "Hausa",
128
- "ba": "Bashkir",
129
- "jw": "Javanese",
130
- "su": "Sundanese",
131
- }
132
-
133
- source_language_list = [key[0] for key in source_languages.items()]
134
-
135
- MODEL_NAME = "vumichien/whisper-medium-jp"
136
- lang = "ja"
137
-
138
- device = 0 if torch.cuda.is_available() else "cpu"
139
- pipe = pipeline(
140
- task="automatic-speech-recognition",
141
- model=MODEL_NAME,
142
- chunk_length_s=30,
143
- device=device,
144
- )
145
- os.makedirs('output', exist_ok=True)
146
- pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
147
-
148
- embedding_model = PretrainedSpeakerEmbedding(
149
- "speechbrain/spkrec-ecapa-voxceleb",
150
- device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
151
-
152
- def transcribe(microphone, file_upload):
153
- warn_output = ""
154
- if (microphone is not None) and (file_upload is not None):
155
- warn_output = (
156
- "WARNING: You've uploaded an audio file and used the microphone. "
157
- "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
158
- )
159
-
160
- elif (microphone is None) and (file_upload is None):
161
- return "ERROR: You have to either use the microphone or upload an audio file"
162
-
163
- file = microphone if microphone is not None else file_upload
164
-
165
- text = pipe(file)["text"]
166
-
167
- return warn_output + text
168
-
169
- def _return_yt_html_embed(yt_url):
170
- video_id = yt_url.split("?v=")[-1]
171
- HTML_str = (
172
- f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
173
- " </center>"
174
- )
175
- return HTML_str
176
-
177
- def yt_transcribe(yt_url):
178
- # yt = YouTube(yt_url)
179
- # html_embed_str = _return_yt_html_embed(yt_url)
180
- # stream = yt.streams.filter(only_audio=True)[0]
181
- # stream.download(filename="audio.mp3")
182
-
183
- ydl_opts = {
184
- 'format': 'bestvideo*+bestaudio/best',
185
- 'postprocessors': [{
186
- 'key': 'FFmpegExtractAudio',
187
- 'preferredcodec': 'mp3',
188
- 'preferredquality': '192',
189
- }],
190
- 'outtmpl':'audio.%(ext)s',
191
- }
192
-
193
- with yt_dlp.YoutubeDL(ydl_opts) as ydl:
194
- ydl.download([yt_url])
195
-
196
- text = pipe("audio.mp3")["text"]
197
- return html_embed_str, text
198
-
199
- def convert_time(secs):
200
- return datetime.timedelta(seconds=round(secs))
201
-
202
- def get_youtube(video_url):
203
- # yt = YouTube(video_url)
204
- # abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
205
-
206
- ydl_opts = {
207
- 'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
208
- }
209
-
210
- with yt_dlp.YoutubeDL(ydl_opts) as ydl:
211
- info = ydl.extract_info(video_url, download=False)
212
- abs_video_path = ydl.prepare_filename(info)
213
- ydl.process_info(info)
214
-
215
- print("Success download video")
216
- print(abs_video_path)
217
- return abs_video_path
218
-
219
- def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers):
220
- """
221
- # Transcribe youtube link using OpenAI Whisper
222
- 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
223
- 2. Generating speaker embeddings for each segments.
224
- 3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
225
-
226
- Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
227
- Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
228
- """
229
-
230
- # model = whisper.load_model(whisper_model)
231
- # model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
232
- model = WhisperModel(whisper_model, compute_type="int8")
233
- time_start = time.time()
234
- if(video_file_path == None):
235
- raise ValueError("Error no video input")
236
- print(video_file_path)
237
-
238
- try:
239
- # Read and convert youtube video
240
- _,file_ending = os.path.splitext(f'{video_file_path}')
241
- print(f'file enging is {file_ending}')
242
- audio_file = video_file_path.replace(file_ending, ".wav")
243
- print("starting conversion to wav")
244
- os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
245
-
246
- # Get duration
247
- with contextlib.closing(wave.open(audio_file,'r')) as f:
248
- frames = f.getnframes()
249
- rate = f.getframerate()
250
- duration = frames / float(rate)
251
- print(f"conversion to wav ready, duration of audio file: {duration}")
252
-
253
- # Transcribe audio
254
- options = dict(language=selected_source_lang, beam_size=5, best_of=5)
255
- transcribe_options = dict(task="transcribe", **options)
256
- segments_raw, info = model.transcribe(audio_file, **transcribe_options)
257
-
258
- # Convert back to original openai format
259
- segments = []
260
- i = 0
261
- for segment_chunk in segments_raw:
262
- chunk = {}
263
- chunk["start"] = segment_chunk.start
264
- chunk["end"] = segment_chunk.end
265
- chunk["text"] = segment_chunk.text
266
- segments.append(chunk)
267
- i += 1
268
- print("transcribe audio done with fast whisper")
269
- except Exception as e:
270
- raise RuntimeError("Error converting video to audio")
271
-
272
- try:
273
- # Create embedding
274
- def segment_embedding(segment):
275
- audio = Audio()
276
- start = segment["start"]
277
- # Whisper overshoots the end timestamp in the last segment
278
- end = min(duration, segment["end"])
279
- clip = Segment(start, end)
280
- waveform, sample_rate = audio.crop(audio_file, clip)
281
- return embedding_model(waveform[None])
282
-
283
- embeddings = np.zeros(shape=(len(segments), 192))
284
- for i, segment in enumerate(segments):
285
- embeddings[i] = segment_embedding(segment)
286
- embeddings = np.nan_to_num(embeddings)
287
- print(f'Embedding shape: {embeddings.shape}')
288
-
289
- if num_speakers == 0:
290
- # Find the best number of speakers
291
- score_num_speakers = {}
292
-
293
- for num_speakers in range(2, 10+1):
294
- clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
295
- score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
296
- score_num_speakers[num_speakers] = score
297
- best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
298
- print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
299
- else:
300
- best_num_speaker = num_speakers
301
-
302
- # Assign speaker label
303
- clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
304
- labels = clustering.labels_
305
- for i in range(len(segments)):
306
- segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
307
-
308
- # Make output
309
- objects = {
310
- 'Start' : [],
311
- 'End': [],
312
- 'Speaker': [],
313
- 'Text': []
314
- }
315
- text = ''
316
- for (i, segment) in enumerate(segments):
317
- if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
318
- objects['Start'].append(str(convert_time(segment["start"])))
319
- objects['Speaker'].append(segment["speaker"])
320
- if i != 0:
321
- objects['End'].append(str(convert_time(segments[i - 1]["end"])))
322
- objects['Text'].append(text)
323
- text = ''
324
- text += segment["text"] + ' '
325
- objects['End'].append(str(convert_time(segments[i - 1]["end"])))
326
- objects['Text'].append(text)
327
-
328
- time_end = time.time()
329
- time_diff = time_end - time_start
330
- memory = psutil.virtual_memory()
331
- gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
332
- gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
333
- gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
334
- system_info = f"""
335
- *Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
336
- *Processing time: {time_diff:.5} seconds.*
337
- *GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
338
- """
339
- save_path = "output/transcript_result.csv"
340
- df_results = pd.DataFrame(objects)
341
- df_results.to_csv(save_path)
342
- return df_results, system_info, save_path
343
-
344
- except Exception as e:
345
- raise RuntimeError("Error Running inference with local model", e)
346
-
347
-
348
- # ---- Gradio Layout -----
349
- # Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles
350
- video_in = gr.Video(label="Video file", mirror_webcam=False)
351
- youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
352
- df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
353
- memory = psutil.virtual_memory()
354
- selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="en", label="Spoken language in video", interactive=True)
355
- selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)
356
- number_speakers = gr.Number(precision=0, value=0, label="Input number of speakers for better results. If value=0, model will automatic find the best number of speakers", interactive=True)
357
- system_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
358
- download_transcript = gr.File(label="Download transcript")
359
- transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
360
- title = "Whisper speaker diarization"
361
- demo = gr.Blocks(title=title)
362
- demo.encrypt = False
363
-
364
-
365
- with demo:
366
- with gr.Tab("Consult AI"):
367
- gr.Markdown('''
368
- <div>
369
- <h1 style='text-align: center'>Your very own AI Scribe</h1>
370
- This model uses Open AI and a modified Whisper model to produce A SOAP note using only your patient conversations! So give it a try!
371
- </div>
372
- ''')
373
-
374
- with gr.Row():
375
- gr.Markdown('''
376
- ### Transcribe youtube link using OpenAI Whisper
377
- ##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
378
- ##### 2. Using Open AI to analyse the transcript in terms of your chosen profession.
379
- ##### 3. Finally ooutputting your generated SOAP note specilized for your profession and for the patient in just 5 minutes!( Give or take)
380
- ''')
381
-
382
- with gr.Row():
383
- with gr.Column():
384
- youtube_url_in.render()
385
- download_youtube_btn = gr.Button("Download Youtube video")
386
- download_youtube_btn.click(get_youtube, [youtube_url_in], [
387
- video_in])
388
- print(video_in)
389
-
390
-
391
- with gr.Row():
392
- with gr.Column():
393
- video_in.render()
394
- with gr.Column():
395
- gr.Markdown('''
396
- ##### Here you can start the transcription process.
397
- ##### Please select the source language for transcription.
398
- ##### You can select a range of assumed numbers of speakers.
399
- ''')
400
- selected_source_lang.render()
401
- selected_whisper_model.render()
402
- number_speakers.render()
403
- transcribe_btn = gr.Button("Transcribe audio and diarization")
404
- transcribe_btn.click(speech_to_text,
405
- [video_in, selected_source_lang, selected_whisper_model, number_speakers],
406
- [transcription_df, system_info, download_transcript]
407
- )
408
-
409
- with gr.Row():
410
- gr.Markdown('''
411
- ##### Here you will get transcription output
412
- ##### ''')
413
-
414
-
415
- with gr.Row():
416
- with gr.Column():
417
- download_transcript.render()
418
- transcription_df.render()
419
- system_info.render()
420
- gr.Markdown('''<center><img src='https://visitor-badge.glitch.me/badge?page_id=WhisperDiarizationSpeakers' alt='visitor badge'><a href="https://opensource.org/licenses/Apache-2.0"><img src='https://img.shields.io/badge/License-Apache_2.0-blue.svg' alt='License: Apache 2.0'></center>''')
421
- demo.launch(debug=True)