Spaces:
Build error
Build error
Persival123
commited on
Commit
•
f7634d9
1
Parent(s):
bad0c4e
Delete app (1).py
Browse files- app (1).py +0 -421
app (1).py
DELETED
@@ -1,421 +0,0 @@
|
|
1 |
-
# import whisper
|
2 |
-
from faster_whisper import WhisperModel
|
3 |
-
import datetime
|
4 |
-
import subprocess
|
5 |
-
import gradio as gr
|
6 |
-
from pathlib import Path
|
7 |
-
import pandas as pd
|
8 |
-
import re
|
9 |
-
import time
|
10 |
-
import os
|
11 |
-
import numpy as np
|
12 |
-
from sklearn.cluster import AgglomerativeClustering
|
13 |
-
from sklearn.metrics import silhouette_score
|
14 |
-
|
15 |
-
from pytube import YouTube
|
16 |
-
import yt_dlp
|
17 |
-
import torch
|
18 |
-
import pyannote.audio
|
19 |
-
from pyannote.audio.pipelines.speaker_verification import PretrainedSpeakerEmbedding
|
20 |
-
from pyannote.audio import Audio
|
21 |
-
from pyannote.core import Segment
|
22 |
-
|
23 |
-
from gpuinfo import GPUInfo
|
24 |
-
|
25 |
-
import wave
|
26 |
-
import contextlib
|
27 |
-
from transformers import pipeline
|
28 |
-
import psutil
|
29 |
-
|
30 |
-
whisper_models = ["tiny", "base", "small", "medium", "large-v1", "large-v2"]
|
31 |
-
source_languages = {
|
32 |
-
"en": "English",
|
33 |
-
"zh": "Chinese",
|
34 |
-
"de": "German",
|
35 |
-
"es": "Spanish",
|
36 |
-
"ru": "Russian",
|
37 |
-
"ko": "Korean",
|
38 |
-
"fr": "French",
|
39 |
-
"ja": "Japanese",
|
40 |
-
"pt": "Portuguese",
|
41 |
-
"tr": "Turkish",
|
42 |
-
"pl": "Polish",
|
43 |
-
"ca": "Catalan",
|
44 |
-
"nl": "Dutch",
|
45 |
-
"ar": "Arabic",
|
46 |
-
"sv": "Swedish",
|
47 |
-
"it": "Italian",
|
48 |
-
"id": "Indonesian",
|
49 |
-
"hi": "Hindi",
|
50 |
-
"fi": "Finnish",
|
51 |
-
"vi": "Vietnamese",
|
52 |
-
"he": "Hebrew",
|
53 |
-
"uk": "Ukrainian",
|
54 |
-
"el": "Greek",
|
55 |
-
"ms": "Malay",
|
56 |
-
"cs": "Czech",
|
57 |
-
"ro": "Romanian",
|
58 |
-
"da": "Danish",
|
59 |
-
"hu": "Hungarian",
|
60 |
-
"ta": "Tamil",
|
61 |
-
"no": "Norwegian",
|
62 |
-
"th": "Thai",
|
63 |
-
"ur": "Urdu",
|
64 |
-
"hr": "Croatian",
|
65 |
-
"bg": "Bulgarian",
|
66 |
-
"lt": "Lithuanian",
|
67 |
-
"la": "Latin",
|
68 |
-
"mi": "Maori",
|
69 |
-
"ml": "Malayalam",
|
70 |
-
"cy": "Welsh",
|
71 |
-
"sk": "Slovak",
|
72 |
-
"te": "Telugu",
|
73 |
-
"fa": "Persian",
|
74 |
-
"lv": "Latvian",
|
75 |
-
"bn": "Bengali",
|
76 |
-
"sr": "Serbian",
|
77 |
-
"az": "Azerbaijani",
|
78 |
-
"sl": "Slovenian",
|
79 |
-
"kn": "Kannada",
|
80 |
-
"et": "Estonian",
|
81 |
-
"mk": "Macedonian",
|
82 |
-
"br": "Breton",
|
83 |
-
"eu": "Basque",
|
84 |
-
"is": "Icelandic",
|
85 |
-
"hy": "Armenian",
|
86 |
-
"ne": "Nepali",
|
87 |
-
"mn": "Mongolian",
|
88 |
-
"bs": "Bosnian",
|
89 |
-
"kk": "Kazakh",
|
90 |
-
"sq": "Albanian",
|
91 |
-
"sw": "Swahili",
|
92 |
-
"gl": "Galician",
|
93 |
-
"mr": "Marathi",
|
94 |
-
"pa": "Punjabi",
|
95 |
-
"si": "Sinhala",
|
96 |
-
"km": "Khmer",
|
97 |
-
"sn": "Shona",
|
98 |
-
"yo": "Yoruba",
|
99 |
-
"so": "Somali",
|
100 |
-
"af": "Afrikaans",
|
101 |
-
"oc": "Occitan",
|
102 |
-
"ka": "Georgian",
|
103 |
-
"be": "Belarusian",
|
104 |
-
"tg": "Tajik",
|
105 |
-
"sd": "Sindhi",
|
106 |
-
"gu": "Gujarati",
|
107 |
-
"am": "Amharic",
|
108 |
-
"yi": "Yiddish",
|
109 |
-
"lo": "Lao",
|
110 |
-
"uz": "Uzbek",
|
111 |
-
"fo": "Faroese",
|
112 |
-
"ht": "Haitian creole",
|
113 |
-
"ps": "Pashto",
|
114 |
-
"tk": "Turkmen",
|
115 |
-
"nn": "Nynorsk",
|
116 |
-
"mt": "Maltese",
|
117 |
-
"sa": "Sanskrit",
|
118 |
-
"lb": "Luxembourgish",
|
119 |
-
"my": "Myanmar",
|
120 |
-
"bo": "Tibetan",
|
121 |
-
"tl": "Tagalog",
|
122 |
-
"mg": "Malagasy",
|
123 |
-
"as": "Assamese",
|
124 |
-
"tt": "Tatar",
|
125 |
-
"haw": "Hawaiian",
|
126 |
-
"ln": "Lingala",
|
127 |
-
"ha": "Hausa",
|
128 |
-
"ba": "Bashkir",
|
129 |
-
"jw": "Javanese",
|
130 |
-
"su": "Sundanese",
|
131 |
-
}
|
132 |
-
|
133 |
-
source_language_list = [key[0] for key in source_languages.items()]
|
134 |
-
|
135 |
-
MODEL_NAME = "vumichien/whisper-medium-jp"
|
136 |
-
lang = "ja"
|
137 |
-
|
138 |
-
device = 0 if torch.cuda.is_available() else "cpu"
|
139 |
-
pipe = pipeline(
|
140 |
-
task="automatic-speech-recognition",
|
141 |
-
model=MODEL_NAME,
|
142 |
-
chunk_length_s=30,
|
143 |
-
device=device,
|
144 |
-
)
|
145 |
-
os.makedirs('output', exist_ok=True)
|
146 |
-
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
|
147 |
-
|
148 |
-
embedding_model = PretrainedSpeakerEmbedding(
|
149 |
-
"speechbrain/spkrec-ecapa-voxceleb",
|
150 |
-
device=torch.device("cuda" if torch.cuda.is_available() else "cpu"))
|
151 |
-
|
152 |
-
def transcribe(microphone, file_upload):
|
153 |
-
warn_output = ""
|
154 |
-
if (microphone is not None) and (file_upload is not None):
|
155 |
-
warn_output = (
|
156 |
-
"WARNING: You've uploaded an audio file and used the microphone. "
|
157 |
-
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
158 |
-
)
|
159 |
-
|
160 |
-
elif (microphone is None) and (file_upload is None):
|
161 |
-
return "ERROR: You have to either use the microphone or upload an audio file"
|
162 |
-
|
163 |
-
file = microphone if microphone is not None else file_upload
|
164 |
-
|
165 |
-
text = pipe(file)["text"]
|
166 |
-
|
167 |
-
return warn_output + text
|
168 |
-
|
169 |
-
def _return_yt_html_embed(yt_url):
|
170 |
-
video_id = yt_url.split("?v=")[-1]
|
171 |
-
HTML_str = (
|
172 |
-
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
173 |
-
" </center>"
|
174 |
-
)
|
175 |
-
return HTML_str
|
176 |
-
|
177 |
-
def yt_transcribe(yt_url):
|
178 |
-
# yt = YouTube(yt_url)
|
179 |
-
# html_embed_str = _return_yt_html_embed(yt_url)
|
180 |
-
# stream = yt.streams.filter(only_audio=True)[0]
|
181 |
-
# stream.download(filename="audio.mp3")
|
182 |
-
|
183 |
-
ydl_opts = {
|
184 |
-
'format': 'bestvideo*+bestaudio/best',
|
185 |
-
'postprocessors': [{
|
186 |
-
'key': 'FFmpegExtractAudio',
|
187 |
-
'preferredcodec': 'mp3',
|
188 |
-
'preferredquality': '192',
|
189 |
-
}],
|
190 |
-
'outtmpl':'audio.%(ext)s',
|
191 |
-
}
|
192 |
-
|
193 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
194 |
-
ydl.download([yt_url])
|
195 |
-
|
196 |
-
text = pipe("audio.mp3")["text"]
|
197 |
-
return html_embed_str, text
|
198 |
-
|
199 |
-
def convert_time(secs):
|
200 |
-
return datetime.timedelta(seconds=round(secs))
|
201 |
-
|
202 |
-
def get_youtube(video_url):
|
203 |
-
# yt = YouTube(video_url)
|
204 |
-
# abs_video_path = yt.streams.filter(progressive=True, file_extension='mp4').order_by('resolution').desc().first().download()
|
205 |
-
|
206 |
-
ydl_opts = {
|
207 |
-
'format': 'bestvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best',
|
208 |
-
}
|
209 |
-
|
210 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
211 |
-
info = ydl.extract_info(video_url, download=False)
|
212 |
-
abs_video_path = ydl.prepare_filename(info)
|
213 |
-
ydl.process_info(info)
|
214 |
-
|
215 |
-
print("Success download video")
|
216 |
-
print(abs_video_path)
|
217 |
-
return abs_video_path
|
218 |
-
|
219 |
-
def speech_to_text(video_file_path, selected_source_lang, whisper_model, num_speakers):
|
220 |
-
"""
|
221 |
-
# Transcribe youtube link using OpenAI Whisper
|
222 |
-
1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
|
223 |
-
2. Generating speaker embeddings for each segments.
|
224 |
-
3. Applying agglomerative clustering on the embeddings to identify the speaker for each segment.
|
225 |
-
|
226 |
-
Speech Recognition is based on models from OpenAI Whisper https://github.com/openai/whisper
|
227 |
-
Speaker diarization model and pipeline from by https://github.com/pyannote/pyannote-audio
|
228 |
-
"""
|
229 |
-
|
230 |
-
# model = whisper.load_model(whisper_model)
|
231 |
-
# model = WhisperModel(whisper_model, device="cuda", compute_type="int8_float16")
|
232 |
-
model = WhisperModel(whisper_model, compute_type="int8")
|
233 |
-
time_start = time.time()
|
234 |
-
if(video_file_path == None):
|
235 |
-
raise ValueError("Error no video input")
|
236 |
-
print(video_file_path)
|
237 |
-
|
238 |
-
try:
|
239 |
-
# Read and convert youtube video
|
240 |
-
_,file_ending = os.path.splitext(f'{video_file_path}')
|
241 |
-
print(f'file enging is {file_ending}')
|
242 |
-
audio_file = video_file_path.replace(file_ending, ".wav")
|
243 |
-
print("starting conversion to wav")
|
244 |
-
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file}"')
|
245 |
-
|
246 |
-
# Get duration
|
247 |
-
with contextlib.closing(wave.open(audio_file,'r')) as f:
|
248 |
-
frames = f.getnframes()
|
249 |
-
rate = f.getframerate()
|
250 |
-
duration = frames / float(rate)
|
251 |
-
print(f"conversion to wav ready, duration of audio file: {duration}")
|
252 |
-
|
253 |
-
# Transcribe audio
|
254 |
-
options = dict(language=selected_source_lang, beam_size=5, best_of=5)
|
255 |
-
transcribe_options = dict(task="transcribe", **options)
|
256 |
-
segments_raw, info = model.transcribe(audio_file, **transcribe_options)
|
257 |
-
|
258 |
-
# Convert back to original openai format
|
259 |
-
segments = []
|
260 |
-
i = 0
|
261 |
-
for segment_chunk in segments_raw:
|
262 |
-
chunk = {}
|
263 |
-
chunk["start"] = segment_chunk.start
|
264 |
-
chunk["end"] = segment_chunk.end
|
265 |
-
chunk["text"] = segment_chunk.text
|
266 |
-
segments.append(chunk)
|
267 |
-
i += 1
|
268 |
-
print("transcribe audio done with fast whisper")
|
269 |
-
except Exception as e:
|
270 |
-
raise RuntimeError("Error converting video to audio")
|
271 |
-
|
272 |
-
try:
|
273 |
-
# Create embedding
|
274 |
-
def segment_embedding(segment):
|
275 |
-
audio = Audio()
|
276 |
-
start = segment["start"]
|
277 |
-
# Whisper overshoots the end timestamp in the last segment
|
278 |
-
end = min(duration, segment["end"])
|
279 |
-
clip = Segment(start, end)
|
280 |
-
waveform, sample_rate = audio.crop(audio_file, clip)
|
281 |
-
return embedding_model(waveform[None])
|
282 |
-
|
283 |
-
embeddings = np.zeros(shape=(len(segments), 192))
|
284 |
-
for i, segment in enumerate(segments):
|
285 |
-
embeddings[i] = segment_embedding(segment)
|
286 |
-
embeddings = np.nan_to_num(embeddings)
|
287 |
-
print(f'Embedding shape: {embeddings.shape}')
|
288 |
-
|
289 |
-
if num_speakers == 0:
|
290 |
-
# Find the best number of speakers
|
291 |
-
score_num_speakers = {}
|
292 |
-
|
293 |
-
for num_speakers in range(2, 10+1):
|
294 |
-
clustering = AgglomerativeClustering(num_speakers).fit(embeddings)
|
295 |
-
score = silhouette_score(embeddings, clustering.labels_, metric='euclidean')
|
296 |
-
score_num_speakers[num_speakers] = score
|
297 |
-
best_num_speaker = max(score_num_speakers, key=lambda x:score_num_speakers[x])
|
298 |
-
print(f"The best number of speakers: {best_num_speaker} with {score_num_speakers[best_num_speaker]} score")
|
299 |
-
else:
|
300 |
-
best_num_speaker = num_speakers
|
301 |
-
|
302 |
-
# Assign speaker label
|
303 |
-
clustering = AgglomerativeClustering(best_num_speaker).fit(embeddings)
|
304 |
-
labels = clustering.labels_
|
305 |
-
for i in range(len(segments)):
|
306 |
-
segments[i]["speaker"] = 'SPEAKER ' + str(labels[i] + 1)
|
307 |
-
|
308 |
-
# Make output
|
309 |
-
objects = {
|
310 |
-
'Start' : [],
|
311 |
-
'End': [],
|
312 |
-
'Speaker': [],
|
313 |
-
'Text': []
|
314 |
-
}
|
315 |
-
text = ''
|
316 |
-
for (i, segment) in enumerate(segments):
|
317 |
-
if i == 0 or segments[i - 1]["speaker"] != segment["speaker"]:
|
318 |
-
objects['Start'].append(str(convert_time(segment["start"])))
|
319 |
-
objects['Speaker'].append(segment["speaker"])
|
320 |
-
if i != 0:
|
321 |
-
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
|
322 |
-
objects['Text'].append(text)
|
323 |
-
text = ''
|
324 |
-
text += segment["text"] + ' '
|
325 |
-
objects['End'].append(str(convert_time(segments[i - 1]["end"])))
|
326 |
-
objects['Text'].append(text)
|
327 |
-
|
328 |
-
time_end = time.time()
|
329 |
-
time_diff = time_end - time_start
|
330 |
-
memory = psutil.virtual_memory()
|
331 |
-
gpu_utilization, gpu_memory = GPUInfo.gpu_usage()
|
332 |
-
gpu_utilization = gpu_utilization[0] if len(gpu_utilization) > 0 else 0
|
333 |
-
gpu_memory = gpu_memory[0] if len(gpu_memory) > 0 else 0
|
334 |
-
system_info = f"""
|
335 |
-
*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB.*
|
336 |
-
*Processing time: {time_diff:.5} seconds.*
|
337 |
-
*GPU Utilization: {gpu_utilization}%, GPU Memory: {gpu_memory}MiB.*
|
338 |
-
"""
|
339 |
-
save_path = "output/transcript_result.csv"
|
340 |
-
df_results = pd.DataFrame(objects)
|
341 |
-
df_results.to_csv(save_path)
|
342 |
-
return df_results, system_info, save_path
|
343 |
-
|
344 |
-
except Exception as e:
|
345 |
-
raise RuntimeError("Error Running inference with local model", e)
|
346 |
-
|
347 |
-
|
348 |
-
# ---- Gradio Layout -----
|
349 |
-
# Inspiration from https://huggingface.co/spaces/RASMUS/Whisper-youtube-crosslingual-subtitles
|
350 |
-
video_in = gr.Video(label="Video file", mirror_webcam=False)
|
351 |
-
youtube_url_in = gr.Textbox(label="Youtube url", lines=1, interactive=True)
|
352 |
-
df_init = pd.DataFrame(columns=['Start', 'End', 'Speaker', 'Text'])
|
353 |
-
memory = psutil.virtual_memory()
|
354 |
-
selected_source_lang = gr.Dropdown(choices=source_language_list, type="value", value="en", label="Spoken language in video", interactive=True)
|
355 |
-
selected_whisper_model = gr.Dropdown(choices=whisper_models, type="value", value="base", label="Selected Whisper model", interactive=True)
|
356 |
-
number_speakers = gr.Number(precision=0, value=0, label="Input number of speakers for better results. If value=0, model will automatic find the best number of speakers", interactive=True)
|
357 |
-
system_info = gr.Markdown(f"*Memory: {memory.total / (1024 * 1024 * 1024):.2f}GB, used: {memory.percent}%, available: {memory.available / (1024 * 1024 * 1024):.2f}GB*")
|
358 |
-
download_transcript = gr.File(label="Download transcript")
|
359 |
-
transcription_df = gr.DataFrame(value=df_init,label="Transcription dataframe", row_count=(0, "dynamic"), max_rows = 10, wrap=True, overflow_row_behaviour='paginate')
|
360 |
-
title = "Whisper speaker diarization"
|
361 |
-
demo = gr.Blocks(title=title)
|
362 |
-
demo.encrypt = False
|
363 |
-
|
364 |
-
|
365 |
-
with demo:
|
366 |
-
with gr.Tab("Consult AI"):
|
367 |
-
gr.Markdown('''
|
368 |
-
<div>
|
369 |
-
<h1 style='text-align: center'>Your very own AI Scribe</h1>
|
370 |
-
This model uses Open AI and a modified Whisper model to produce A SOAP note using only your patient conversations! So give it a try!
|
371 |
-
</div>
|
372 |
-
''')
|
373 |
-
|
374 |
-
with gr.Row():
|
375 |
-
gr.Markdown('''
|
376 |
-
### Transcribe youtube link using OpenAI Whisper
|
377 |
-
##### 1. Using Open AI's Whisper model to seperate audio into segments and generate transcripts.
|
378 |
-
##### 2. Using Open AI to analyse the transcript in terms of your chosen profession.
|
379 |
-
##### 3. Finally ooutputting your generated SOAP note specilized for your profession and for the patient in just 5 minutes!( Give or take)
|
380 |
-
''')
|
381 |
-
|
382 |
-
with gr.Row():
|
383 |
-
with gr.Column():
|
384 |
-
youtube_url_in.render()
|
385 |
-
download_youtube_btn = gr.Button("Download Youtube video")
|
386 |
-
download_youtube_btn.click(get_youtube, [youtube_url_in], [
|
387 |
-
video_in])
|
388 |
-
print(video_in)
|
389 |
-
|
390 |
-
|
391 |
-
with gr.Row():
|
392 |
-
with gr.Column():
|
393 |
-
video_in.render()
|
394 |
-
with gr.Column():
|
395 |
-
gr.Markdown('''
|
396 |
-
##### Here you can start the transcription process.
|
397 |
-
##### Please select the source language for transcription.
|
398 |
-
##### You can select a range of assumed numbers of speakers.
|
399 |
-
''')
|
400 |
-
selected_source_lang.render()
|
401 |
-
selected_whisper_model.render()
|
402 |
-
number_speakers.render()
|
403 |
-
transcribe_btn = gr.Button("Transcribe audio and diarization")
|
404 |
-
transcribe_btn.click(speech_to_text,
|
405 |
-
[video_in, selected_source_lang, selected_whisper_model, number_speakers],
|
406 |
-
[transcription_df, system_info, download_transcript]
|
407 |
-
)
|
408 |
-
|
409 |
-
with gr.Row():
|
410 |
-
gr.Markdown('''
|
411 |
-
##### Here you will get transcription output
|
412 |
-
##### ''')
|
413 |
-
|
414 |
-
|
415 |
-
with gr.Row():
|
416 |
-
with gr.Column():
|
417 |
-
download_transcript.render()
|
418 |
-
transcription_df.render()
|
419 |
-
system_info.render()
|
420 |
-
gr.Markdown('''<center><img src='https://visitor-badge.glitch.me/badge?page_id=WhisperDiarizationSpeakers' alt='visitor badge'><a href="https://opensource.org/licenses/Apache-2.0"><img src='https://img.shields.io/badge/License-Apache_2.0-blue.svg' alt='License: Apache 2.0'></center>''')
|
421 |
-
demo.launch(debug=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|