Spaces:
Paused
Paused
Delete llm_evaluation.py
Browse files- llm_evaluation.py +0 -149
llm_evaluation.py
DELETED
@@ -1,149 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
from sentence_transformers import SentenceTransformer, util
|
3 |
-
import nltk
|
4 |
-
from openai import OpenAI
|
5 |
-
import os
|
6 |
-
from nltk.translate.bleu_score import sentence_bleu, SmoothingFunction
|
7 |
-
import time
|
8 |
-
import asyncio
|
9 |
-
import logging
|
10 |
-
import sys
|
11 |
-
# Configure logging
|
12 |
-
logging.basicConfig(level=logging.INFO)
|
13 |
-
# Download necessary NLTK resources
|
14 |
-
nltk.download('punkt')
|
15 |
-
def load_input_data():
|
16 |
-
"""Load input data from command line arguments."""
|
17 |
-
try:
|
18 |
-
input_data = json.loads(sys.argv[1])
|
19 |
-
return input_data
|
20 |
-
except json.JSONDecodeError as e:
|
21 |
-
logging.error(f"Failed to decode JSON input: {e}")
|
22 |
-
sys.exit(1)
|
23 |
-
|
24 |
-
def initialize_openai_client(api_key, base_url):
|
25 |
-
"""Initialize the OpenAI client."""
|
26 |
-
return OpenAI(api_key=api_key, base_url=base_url)
|
27 |
-
|
28 |
-
def load_model():
|
29 |
-
"""Load the pre-trained models for evaluation."""
|
30 |
-
semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
31 |
-
return semantic_model
|
32 |
-
|
33 |
-
def evaluate_semantic_similarity(expected_response, model_response, semantic_model):
|
34 |
-
"""Evaluate semantic similarity using Sentence-BERT."""
|
35 |
-
expected_embedding = semantic_model.encode(expected_response, convert_to_tensor=True)
|
36 |
-
model_embedding = semantic_model.encode(model_response, convert_to_tensor=True)
|
37 |
-
similarity_score = util.pytorch_cos_sim(expected_embedding, model_embedding)
|
38 |
-
return similarity_score.item()
|
39 |
-
|
40 |
-
def evaluate_bleu(expected_response, model_response):
|
41 |
-
"""Evaluate BLEU score using NLTK's sentence_bleu."""
|
42 |
-
expected_tokens = nltk.word_tokenize(expected_response.lower())
|
43 |
-
model_tokens = nltk.word_tokenize(model_response.lower())
|
44 |
-
smoothing_function = nltk.translate.bleu_score.SmoothingFunction().method1
|
45 |
-
bleu_score = nltk.translate.bleu_score.sentence_bleu([expected_tokens], model_tokens, smoothing_function=smoothing_function)
|
46 |
-
return bleu_score
|
47 |
-
|
48 |
-
async def create_with_retries(client, **kwargs):
|
49 |
-
"""Retry mechanism for handling transient server errors asynchronously."""
|
50 |
-
max_retries = 3 # Retry up to 3 times
|
51 |
-
retry_delay = 5 # Retry delay in seconds
|
52 |
-
timeout = 60 # Set timeout to 60 seconds (or adjust as needed)
|
53 |
-
|
54 |
-
for attempt in range(max_retries):
|
55 |
-
try:
|
56 |
-
# Attempt to make the API request with an increased timeout
|
57 |
-
response = await client.chat.completions.create(**kwargs, timeout=timeout)
|
58 |
-
return response # Return the response if successful
|
59 |
-
except Exception as e: # Catch all exceptions
|
60 |
-
if attempt < max_retries - 1: # Only retry for the first two attempts
|
61 |
-
logging.error(f"Attempt {attempt + 1}/{max_retries} failed: {e}. Retrying...")
|
62 |
-
await asyncio.sleep(retry_delay) # Wait before retrying
|
63 |
-
else:
|
64 |
-
logging.error(f"API request failed after {max_retries} attempts: {e}")
|
65 |
-
# Capture additional debugging information here
|
66 |
-
logging.debug(f"Request data: {kwargs}")
|
67 |
-
raise Exception("API request failed after retries") from e
|
68 |
-
|
69 |
-
|
70 |
-
async def evaluate_model(data, model_name, client, semantic_model):
|
71 |
-
"""Evaluate the model using the provided data."""
|
72 |
-
semantic_scores = []
|
73 |
-
bleu_scores = []
|
74 |
-
|
75 |
-
for entry in data:
|
76 |
-
prompt = entry['prompt']
|
77 |
-
expected_response = entry['response']
|
78 |
-
|
79 |
-
# Create a chat completion using OpenAI API
|
80 |
-
response = await create_with_retries(
|
81 |
-
client,
|
82 |
-
model=f"PharynxAI/{model_name}",
|
83 |
-
messages=[
|
84 |
-
{"role": "system", "content": " "},
|
85 |
-
{"role": "system", "content": "You are a helpful assistant."},
|
86 |
-
{"role": "user", "content": prompt}
|
87 |
-
],
|
88 |
-
temperature=0.7,
|
89 |
-
max_tokens=200,
|
90 |
-
timeout=400
|
91 |
-
)
|
92 |
-
|
93 |
-
# Ensure the response contains choices
|
94 |
-
if not response.choices:
|
95 |
-
logging.error(f"No choices returned for prompt: {prompt}. Skipping this entry.")
|
96 |
-
continue
|
97 |
-
|
98 |
-
model_response = response.choices[0].message.content # Extract model's response
|
99 |
-
|
100 |
-
# Evaluate scores
|
101 |
-
semantic_score = evaluate_semantic_similarity(expected_response, model_response, semantic_model)
|
102 |
-
semantic_scores.append(semantic_score)
|
103 |
-
|
104 |
-
bleu_score = evaluate_bleu(expected_response, model_response)
|
105 |
-
bleu_scores.append(bleu_score)
|
106 |
-
|
107 |
-
# Calculate average scores
|
108 |
-
avg_semantic_score = sum(semantic_scores) / len(semantic_scores) if semantic_scores else 0
|
109 |
-
avg_bleu_score = sum(bleu_scores) / len(bleu_scores) if bleu_scores else 0
|
110 |
-
|
111 |
-
print(f"Average Semantic Similarity: {avg_semantic_score:.4f}")
|
112 |
-
print(f"Average BLEU Score: {avg_bleu_score:.4f}")
|
113 |
-
|
114 |
-
# Create comprehensive results dictionary
|
115 |
-
evaluation_results = {
|
116 |
-
'average_semantic_score': avg_semantic_score,
|
117 |
-
'average_bleu_score': avg_bleu_score
|
118 |
-
}
|
119 |
-
|
120 |
-
# Print results to stdout for capturing in handler
|
121 |
-
print(json.dumps(evaluation_results))
|
122 |
-
|
123 |
-
logging.info("\nOverall Average Scores:")
|
124 |
-
logging.info(f"Average Semantic Similarity: {avg_semantic_score:.4f}")
|
125 |
-
logging.info(f"Average BLEU Score: {avg_bleu_score:.4f}")
|
126 |
-
|
127 |
-
return evaluation_results
|
128 |
-
|
129 |
-
|
130 |
-
async def main():
|
131 |
-
# Load input data
|
132 |
-
input_data = load_input_data()
|
133 |
-
model_name = input_data["model_name"]
|
134 |
-
# Initialize the OpenAI Client with your RunPod API Key and Endpoint URL
|
135 |
-
client = OpenAI(
|
136 |
-
api_key="MIGZGJKYD6PU8KTHTBQ8FMEMGP2RAW5DVXABFVFD",
|
137 |
-
base_url="https://api.runpod.ai/v2/6vg8gj8ia9vd1w/openai/v1",
|
138 |
-
)
|
139 |
-
# Load pre-trained models
|
140 |
-
semantic_model = load_model()
|
141 |
-
# Load your dataset (replace with your actual JSON file)
|
142 |
-
with open('output_json.json', 'r') as f:
|
143 |
-
data = json.load(f)
|
144 |
-
|
145 |
-
# Run the evaluation asynchronously
|
146 |
-
await evaluate_model(data, model_name, client, semantic_model)
|
147 |
-
|
148 |
-
# Start the event loop
|
149 |
-
asyncio.run(main())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|