Spaces:
Running
Running
File size: 3,202 Bytes
0927a59 59c83e1 0927a59 89f12f8 0927a59 59c83e1 89f12f8 47ed924 89f12f8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import random
import os
import re
import streamlit as st
from langchain_nvidia_ai_endpoints import ChatNVIDIA
# Set environmental variables
nvidia_api_key = os.getenv("NVIDIA_KEY")
# Initialize ChatNVIDIA for text generation
client = ChatNVIDIA(
model="meta/llama-3.1-8b-instruct",
api_key=nvidia_api_key,
temperature=0.5,
top_p=0.85,
max_tokens=80
)
# Get the absolute path of the script's directory
script_dir = os.path.dirname(os.path.abspath(__file__))
phrases_file = os.path.join(script_dir, "phrases.txt")
# Read phrases from the text file
with open(phrases_file, "r") as f:
lines = f.readlines()
def clean_response(response_text):
# Join the response list into a single string
response_end = " ".join(response_text).strip()
# Replace multiple spaces with a single space
response_end = re.sub(r'\s+', ' ', response_end) # Collapses multiple spaces into one
# Attempt to fix improper word splitting only
# This regex finds single-letter space single-letter cases more precisely and joins them
response_end = re.sub(r'(\b\w)\s+(\w\b)', r'\1\2', response_end, flags=re.UNICODE)
response_end = re.sub(r'\s*([,.!?])\s*', r'\1 ', response_end)
# Remove any extraneous newlines or extra spaces left over
response_end = response_end.replace("\n", " ").replace(" ", " ")
# Trim any leading or trailing spaces
response_end = response_end.strip()
return response_text
def generate(starting_text):
for count in range(6):
seed = random.randint(100, 1000000)
random.seed(seed)
# If the text field is empty
if starting_text == "":
starting_text = lines[random.randrange(0, len(lines))].strip()
starting_text = re.sub(r"[,:\-–.!;?_]", '', starting_text)
# Format messages for the client
messages = [
{"role": "system", "content": "Create a vivid and imaginative MidJourney prompt for image generation. Focus on descriptive language, colors, and setting to evoke a specific visual scene. Avoid storytelling; focus on visual elements."},
{"role": "user", "content": starting_text}
]
# Stream response from LLaMA
response = client.stream(messages)
# Buffer to accumulate response chunks
buffer = []
for chunk in response:
if chunk.content:
resp = chunk.content.strip()
if resp != starting_text:
buffer.append(resp)
# Join the buffered chunks into a single string
response_text = " ".join(buffer).strip()
# Clean up the response text
response_end = clean_response(response_text)
# Print only the final response if it's not empty
if response_end != "":
return response_end
# Streamlit UI
st.title("Generate Sci-fi/Space-themed MidJourney Prompts")
user_input = st.text_input("Enter a short text or just press 'Generate Prompt' to use our space-themed RAG to get space-themed prompt:")
if st.button("Generate Prompt"):
generated_prompt = generate(user_input)
st.write("**MidJourney Prompt:**")
st.write(generated_prompt) |