File size: 8,596 Bytes
a302b85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) Facebook, Inc. and its affiliates.
from collections import defaultdict
import torch
import sys
import json
import numpy as np

from detectron2.structures import Boxes, pairwise_iou
COCO_PATH = 'datasets/coco/annotations/instances_train2017.json'
IMG_PATH = 'datasets/coco/train2017/'
LVIS_PATH = 'datasets/lvis/lvis_v1_train.json'
NO_SEG = False
if NO_SEG:
    SAVE_PATH = 'datasets/lvis/lvis_v1_train+coco_box.json'
else:
    SAVE_PATH = 'datasets/lvis/lvis_v1_train+coco_mask.json'
THRESH = 0.7
DEBUG = False

# This mapping is extracted from the official LVIS mapping:
# https://github.com/lvis-dataset/lvis-api/blob/master/data/coco_to_synset.json
COCO_SYNSET_CATEGORIES = [
    {"synset": "person.n.01", "coco_cat_id": 1},
    {"synset": "bicycle.n.01", "coco_cat_id": 2},
    {"synset": "car.n.01", "coco_cat_id": 3},
    {"synset": "motorcycle.n.01", "coco_cat_id": 4},
    {"synset": "airplane.n.01", "coco_cat_id": 5},
    {"synset": "bus.n.01", "coco_cat_id": 6},
    {"synset": "train.n.01", "coco_cat_id": 7},
    {"synset": "truck.n.01", "coco_cat_id": 8},
    {"synset": "boat.n.01", "coco_cat_id": 9},
    {"synset": "traffic_light.n.01", "coco_cat_id": 10},
    {"synset": "fireplug.n.01", "coco_cat_id": 11},
    {"synset": "stop_sign.n.01", "coco_cat_id": 13},
    {"synset": "parking_meter.n.01", "coco_cat_id": 14},
    {"synset": "bench.n.01", "coco_cat_id": 15},
    {"synset": "bird.n.01", "coco_cat_id": 16},
    {"synset": "cat.n.01", "coco_cat_id": 17},
    {"synset": "dog.n.01", "coco_cat_id": 18},
    {"synset": "horse.n.01", "coco_cat_id": 19},
    {"synset": "sheep.n.01", "coco_cat_id": 20},
    {"synset": "beef.n.01", "coco_cat_id": 21},
    {"synset": "elephant.n.01", "coco_cat_id": 22},
    {"synset": "bear.n.01", "coco_cat_id": 23},
    {"synset": "zebra.n.01", "coco_cat_id": 24},
    {"synset": "giraffe.n.01", "coco_cat_id": 25},
    {"synset": "backpack.n.01", "coco_cat_id": 27},
    {"synset": "umbrella.n.01", "coco_cat_id": 28},
    {"synset": "bag.n.04", "coco_cat_id": 31},
    {"synset": "necktie.n.01", "coco_cat_id": 32},
    {"synset": "bag.n.06", "coco_cat_id": 33},
    {"synset": "frisbee.n.01", "coco_cat_id": 34},
    {"synset": "ski.n.01", "coco_cat_id": 35},
    {"synset": "snowboard.n.01", "coco_cat_id": 36},
    {"synset": "ball.n.06", "coco_cat_id": 37},
    {"synset": "kite.n.03", "coco_cat_id": 38},
    {"synset": "baseball_bat.n.01", "coco_cat_id": 39},
    {"synset": "baseball_glove.n.01", "coco_cat_id": 40},
    {"synset": "skateboard.n.01", "coco_cat_id": 41},
    {"synset": "surfboard.n.01", "coco_cat_id": 42},
    {"synset": "tennis_racket.n.01", "coco_cat_id": 43},
    {"synset": "bottle.n.01", "coco_cat_id": 44},
    {"synset": "wineglass.n.01", "coco_cat_id": 46},
    {"synset": "cup.n.01", "coco_cat_id": 47},
    {"synset": "fork.n.01", "coco_cat_id": 48},
    {"synset": "knife.n.01", "coco_cat_id": 49},
    {"synset": "spoon.n.01", "coco_cat_id": 50},
    {"synset": "bowl.n.03", "coco_cat_id": 51},
    {"synset": "banana.n.02", "coco_cat_id": 52},
    {"synset": "apple.n.01", "coco_cat_id": 53},
    {"synset": "sandwich.n.01", "coco_cat_id": 54},
    {"synset": "orange.n.01", "coco_cat_id": 55},
    {"synset": "broccoli.n.01", "coco_cat_id": 56},
    {"synset": "carrot.n.01", "coco_cat_id": 57},
    # {"synset": "frank.n.02", "coco_cat_id": 58},
    {"synset": "sausage.n.01", "coco_cat_id": 58},
    {"synset": "pizza.n.01", "coco_cat_id": 59},
    {"synset": "doughnut.n.02", "coco_cat_id": 60},
    {"synset": "cake.n.03", "coco_cat_id": 61},
    {"synset": "chair.n.01", "coco_cat_id": 62},
    {"synset": "sofa.n.01", "coco_cat_id": 63},
    {"synset": "pot.n.04", "coco_cat_id": 64},
    {"synset": "bed.n.01", "coco_cat_id": 65},
    {"synset": "dining_table.n.01", "coco_cat_id": 67},
    {"synset": "toilet.n.02", "coco_cat_id": 70},
    {"synset": "television_receiver.n.01", "coco_cat_id": 72},
    {"synset": "laptop.n.01", "coco_cat_id": 73},
    {"synset": "mouse.n.04", "coco_cat_id": 74},
    {"synset": "remote_control.n.01", "coco_cat_id": 75},
    {"synset": "computer_keyboard.n.01", "coco_cat_id": 76},
    {"synset": "cellular_telephone.n.01", "coco_cat_id": 77},
    {"synset": "microwave.n.02", "coco_cat_id": 78},
    {"synset": "oven.n.01", "coco_cat_id": 79},
    {"synset": "toaster.n.02", "coco_cat_id": 80},
    {"synset": "sink.n.01", "coco_cat_id": 81},
    {"synset": "electric_refrigerator.n.01", "coco_cat_id": 82},
    {"synset": "book.n.01", "coco_cat_id": 84},
    {"synset": "clock.n.01", "coco_cat_id": 85},
    {"synset": "vase.n.01", "coco_cat_id": 86},
    {"synset": "scissors.n.01", "coco_cat_id": 87},
    {"synset": "teddy.n.01", "coco_cat_id": 88},
    {"synset": "hand_blower.n.01", "coco_cat_id": 89},
    {"synset": "toothbrush.n.01", "coco_cat_id": 90},
]


def get_bbox(ann):
    bbox = ann['bbox']
    return [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]


if __name__ == '__main__':
    file_name_key = 'file_name' if 'v0.5' in LVIS_PATH else 'coco_url'
    coco_data = json.load(open(COCO_PATH, 'r'))
    lvis_data = json.load(open(LVIS_PATH, 'r'))

    coco_cats = coco_data['categories']
    lvis_cats = lvis_data['categories']

    num_find = 0
    num_not_find = 0
    num_twice = 0
    coco2lviscats = {}
    synset2lvisid = {x['synset']: x['id'] for x in lvis_cats}
    # cocoid2synset = {x['coco_cat_id']: x['synset'] for x in COCO_SYNSET_CATEGORIES}
    coco2lviscats = {x['coco_cat_id']: synset2lvisid[x['synset']] \
        for x in COCO_SYNSET_CATEGORIES if x['synset'] in synset2lvisid}
    print(len(coco2lviscats))
    
    lvis_file2id = {x[file_name_key][-16:]: x['id'] for x in lvis_data['images']}
    lvis_id2img = {x['id']: x for x in lvis_data['images']}
    lvis_catid2name = {x['id']: x['name'] for x in lvis_data['categories']}

    coco_file2anns = {}
    coco_id2img = {x['id']: x for x in coco_data['images']}
    coco_img2anns = defaultdict(list)
    for ann in coco_data['annotations']:
        coco_img = coco_id2img[ann['image_id']]
        file_name = coco_img['file_name'][-16:]
        if ann['category_id'] in coco2lviscats and \
            file_name in lvis_file2id:
            lvis_image_id = lvis_file2id[file_name]
            lvis_image = lvis_id2img[lvis_image_id]
            lvis_cat_id = coco2lviscats[ann['category_id']]
            if lvis_cat_id in lvis_image['neg_category_ids']:
                continue
                if DEBUG:
                    import cv2
                    img_path = IMG_PATH + file_name
                    img = cv2.imread(img_path)
                    print(lvis_catid2name[lvis_cat_id])
                    print('neg', [lvis_catid2name[x] for x in lvis_image['neg_category_ids']])
                    cv2.imshow('img', img)
                    cv2.waitKey()
            ann['category_id'] = lvis_cat_id
            ann['image_id'] = lvis_image_id
            coco_img2anns[file_name].append(ann)
    
    lvis_img2anns = defaultdict(list)
    for ann in lvis_data['annotations']:
        lvis_img = lvis_id2img[ann['image_id']]
        file_name = lvis_img[file_name_key][-16:]
        lvis_img2anns[file_name].append(ann)

    ann_id_count = 0
    anns = []
    for file_name in lvis_img2anns:
        coco_anns = coco_img2anns[file_name]
        lvis_anns = lvis_img2anns[file_name]
        ious = pairwise_iou(
            Boxes(torch.tensor([get_bbox(x) for x in coco_anns])), 
            Boxes(torch.tensor([get_bbox(x) for x in lvis_anns]))
        )

        for ann in lvis_anns:
            ann_id_count = ann_id_count + 1
            ann['id'] = ann_id_count
            anns.append(ann)

        for i, ann in enumerate(coco_anns):
            if len(ious[i]) == 0 or ious[i].max() < THRESH:
                ann_id_count = ann_id_count + 1
                ann['id'] = ann_id_count
                anns.append(ann)
            else:
                duplicated = False
                for j in range(len(ious[i])):
                    if ious[i, j] >= THRESH and \
                        coco_anns[i]['category_id'] == lvis_anns[j]['category_id']:
                        duplicated = True
                if not duplicated:
                    ann_id_count = ann_id_count + 1
                    ann['id'] = ann_id_count
                    anns.append(ann)
    if NO_SEG:
        for ann in anns:
            del ann['segmentation']
    lvis_data['annotations'] = anns
    
    print('# Images', len(lvis_data['images']))
    print('# Anns', len(lvis_data['annotations']))
    json.dump(lvis_data, open(SAVE_PATH, 'w'))