File size: 13,229 Bytes
85d3b29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
import os
import subprocess
import sys
import gradio as gr
from assets.i18n.i18n import I18nAuto
from core import (
    run_preprocess_script,
    run_extract_script,
    run_train_script,
    run_index_script,
)
from rvc.configs.config import max_vram_gpu, get_gpu_info
from rvc.lib.utils import format_title

i18n = I18nAuto()
now_dir = os.getcwd()
sys.path.append(now_dir)

sup_audioext = {
    "wav",
    "mp3",
    "flac",
    "ogg",
    "opus",
    "m4a",
    "mp4",
    "aac",
    "alac",
    "wma",
    "aiff",
    "webm",
    "ac3",
}

# Custom Pretraineds
pretraineds_custom_path = os.path.join(
    now_dir, "rvc", "pretraineds", "pretraineds_custom"
)

pretraineds_custom_path_relative = os.path.relpath(pretraineds_custom_path, now_dir)

if not os.path.exists(pretraineds_custom_path_relative):
    os.makedirs(pretraineds_custom_path_relative)


def get_pretrained_list(suffix):
    return [
        os.path.join(dirpath, filename)
        for dirpath, _, filenames in os.walk(pretraineds_custom_path_relative)
        for filename in filenames
        if filename.endswith(".pth") and suffix in filename
    ]


pretraineds_list_d = get_pretrained_list("D")
pretraineds_list_g = get_pretrained_list("G")


def refresh_custom_pretraineds():
    return (
        {"choices": sorted(get_pretrained_list("G")), "__type__": "update"},
        {"choices": sorted(get_pretrained_list("D")), "__type__": "update"},
    )


# Dataset Creator
datasets_path = os.path.join(now_dir, "assets", "datasets")

if not os.path.exists(datasets_path):
    os.makedirs(datasets_path)

datasets_path_relative = os.path.relpath(datasets_path, now_dir)


def get_datasets_list():
    return [
        dirpath
        for dirpath, _, filenames in os.walk(datasets_path_relative)
        if any(filename.endswith(tuple(sup_audioext)) for filename in filenames)
    ]


def refresh_datasets():
    return {"choices": sorted(get_datasets_list()), "__type__": "update"}


# Drop Model
def save_drop_model(dropbox):
    if ".pth" not in dropbox:
        gr.Info(
            i18n(
                "The file you dropped is not a valid pretrained file. Please try again."
            )
        )
    else:
        file_name = os.path.basename(dropbox)
        pretrained_path = os.path.join(pretraineds_custom_path_relative, file_name)
        if os.path.exists(pretrained_path):
            os.remove(pretrained_path)
        os.rename(dropbox, pretrained_path)
        gr.Info(
            i18n(
                "Click the refresh button to see the pretrained file in the dropdown menu."
            )
        )
    return None


# Drop Dataset
def save_drop_dataset_audio(dropbox, dataset_name):
    if not dataset_name:
        gr.Info("Please enter a valid dataset name. Please try again.")
        return None, None
    else:
        file_extension = os.path.splitext(dropbox)[1][1:].lower()
        if file_extension not in sup_audioext:
            gr.Info("The file you dropped is not a valid audio file. Please try again.")
        else:
            dataset_name = format_title(dataset_name)
            audio_file = format_title(os.path.basename(dropbox))
            dataset_path = os.path.join(now_dir, "assets", "datasets", dataset_name)
            if not os.path.exists(dataset_path):
                os.makedirs(dataset_path)
            destination_path = os.path.join(dataset_path, audio_file)
            if os.path.exists(destination_path):
                os.remove(destination_path)
            os.rename(dropbox, destination_path)
            gr.Info(
                i18n(
                    "The audio file has been successfully added to the dataset. Please click the preprocess button."
                )
            )
            dataset_path = os.path.dirname(destination_path)
            relative_dataset_path = os.path.relpath(dataset_path, now_dir)

            return None, relative_dataset_path


# Train Tab
def train_tab():
    with gr.Accordion(i18n("Preprocess")):
        with gr.Row():
            with gr.Column():
                model_name = gr.Textbox(
                    label=i18n("Model Name"),
                    placeholder=i18n("Enter model name"),
                    value="my-project",
                    interactive=True,
                )
                dataset_path = gr.Dropdown(
                    label=i18n("Dataset Path"),
                    # placeholder=i18n("Enter dataset path"),
                    choices=get_datasets_list(),
                    allow_custom_value=True,
                    interactive=True,
                )
                refresh_datasets_button = gr.Button(i18n("Refresh Datasets"))
                dataset_creator = gr.Checkbox(
                    label=i18n("Dataset Creator"),
                    value=False,
                    interactive=True,
                    visible=True,
                )

                with gr.Column(visible=False) as dataset_creator_settings:
                    with gr.Accordion("Dataset Creator"):
                        dataset_name = gr.Textbox(
                            label=i18n("Dataset Name"),
                            placeholder=i18n("Enter dataset name"),
                            interactive=True,
                        )
                        upload_audio_dataset = gr.File(
                            label=i18n("Upload Audio Dataset"),
                            type="filepath",
                            interactive=True,
                        )

            with gr.Column():
                sampling_rate = gr.Radio(
                    label=i18n("Sampling Rate"),
                    choices=["32000", "40000", "48000"],
                    value="40000",
                    interactive=True,
                )

                rvc_version = gr.Radio(
                    label=i18n("RVC Version"),
                    choices=["v1", "v2"],
                    value="v2",
                    interactive=True,
                )

        preprocess_output_info = gr.Textbox(
            label=i18n("Output Information"),
            value="",
            max_lines=8,
            interactive=False,
        )

        with gr.Row():
            preprocess_button = gr.Button(i18n("Preprocess Dataset"))
            preprocess_button.click(
                run_preprocess_script,
                [model_name, dataset_path, sampling_rate],
                preprocess_output_info,
                api_name="preprocess_dataset",
            )

    with gr.Accordion(i18n("Extract")):
        with gr.Row():
            hop_length = gr.Slider(
                1, 512, 128, step=1, label=i18n("Hop Length"), interactive=True
            )
        with gr.Row():
            with gr.Column():
                f0method = gr.Radio(
                    label=i18n("Pitch extraction algorithm"),
                    choices=["pm", "dio", "crepe", "crepe-tiny", "harvest", "rmvpe"],
                    value="rmvpe",
                    interactive=True,
                )

        extract_output_info = gr.Textbox(
            label=i18n("Output Information"),
            value="",
            max_lines=8,
            interactive=False,
        )
        extract_button = gr.Button(i18n("Extract Features"))
        extract_button.click(
            run_extract_script,
            [model_name, rvc_version, f0method, hop_length, sampling_rate],
            extract_output_info,
            api_name="extract_features",
        )

    with gr.Accordion(i18n("Train")):
        with gr.Row():
            batch_size = gr.Slider(
                1,
                50,
                max_vram_gpu(0),
                step=1,
                label=i18n("Batch Size"),
                interactive=True,
            )
            save_every_epoch = gr.Slider(
                1, 100, 10, step=1, label=i18n("Save Every Epoch"), interactive=True
            )
            total_epoch = gr.Slider(
                1, 1000, 500, step=1, label=i18n("Total Epoch"), interactive=True
            )
        with gr.Row():
            pitch_guidance = gr.Checkbox(
                label=i18n("Pitch Guidance"), value=True, interactive=True
            )
            pretrained = gr.Checkbox(
                label=i18n("Pretrained"), value=True, interactive=True
            )
            save_only_latest = gr.Checkbox(
                label=i18n("Save Only Latest"), value=False, interactive=True
            )
            save_every_weights = gr.Checkbox(
                label=i18n("Save Every Weights"),
                value=True,
                interactive=True,
            )
            custom_pretrained = gr.Checkbox(
                label=i18n("Custom Pretrained"), value=False, interactive=True
            )
            multiple_gpu = gr.Checkbox(
                label=i18n("GPU Settings"), value=False, interactive=True
            )

        with gr.Row():
            with gr.Column(visible=False) as pretrained_custom_settings:
                with gr.Accordion("Pretrained Custom Settings"):
                    upload_pretrained = gr.File(
                        label=i18n("Upload Pretrained Model"),
                        type="filepath",
                        interactive=True,
                    )
                    refresh_custom_pretaineds_button = gr.Button(
                        i18n("Refresh Custom Pretraineds")
                    )
                    g_pretrained_path = gr.Dropdown(
                        label=i18n("Custom Pretrained G"),
                        choices=sorted(pretraineds_list_g),
                        interactive=True,
                        allow_custom_value=True,
                    )
                    d_pretrained_path = gr.Dropdown(
                        label=i18n("Custom Pretrained D"),
                        choices=sorted(pretraineds_list_d),
                        interactive=True,
                        allow_custom_value=True,
                    )
            with gr.Column(visible=False) as gpu_custom_settings:
                with gr.Accordion("GPU Settings"):
                    gpu = gr.Textbox(
                        label=i18n("GPU Number"),
                        placeholder=i18n("0 to ∞ separated by -"),
                        value="0",
                        interactive=True,
                    )
                    gr.Textbox(
                        label=i18n("GPU Information"),
                        value=get_gpu_info(),
                        interactive=False,
                    )

        with gr.Row():
            train_output_info = gr.Textbox(
                label=i18n("Output Information"),
                value="",
                max_lines=8,
                interactive=False,
            )

        with gr.Row():
            train_button = gr.Button(i18n("Start Training"))
            train_button.click(
                run_train_script,
                [
                    model_name,
                    rvc_version,
                    save_every_epoch,
                    save_only_latest,
                    save_every_weights,
                    total_epoch,
                    sampling_rate,
                    batch_size,
                    gpu,
                    pitch_guidance,
                    pretrained,
                    custom_pretrained,
                    g_pretrained_path,
                    d_pretrained_path,
                ],
                train_output_info,
                api_name="start_training",
            )

            index_button = gr.Button(i18n("Generate Index"))
            index_button.click(
                run_index_script,
                [model_name, rvc_version],
                train_output_info,
                api_name="generate_index",
            )

            def toggle_visible(checkbox):
                return {"visible": checkbox, "__type__": "update"}

            refresh_datasets_button.click(
                fn=refresh_datasets,
                inputs=[],
                outputs=[dataset_path],
            )

            dataset_creator.change(
                fn=toggle_visible,
                inputs=[dataset_creator],
                outputs=[dataset_creator_settings],
            )

            upload_audio_dataset.upload(
                fn=save_drop_dataset_audio,
                inputs=[upload_audio_dataset, dataset_name],
                outputs=[upload_audio_dataset, dataset_path],
            )

            custom_pretrained.change(
                fn=toggle_visible,
                inputs=[custom_pretrained],
                outputs=[pretrained_custom_settings],
            )

            refresh_custom_pretaineds_button.click(
                fn=refresh_custom_pretraineds,
                inputs=[],
                outputs=[g_pretrained_path, d_pretrained_path],
            )

            upload_pretrained.upload(
                fn=save_drop_model,
                inputs=[upload_pretrained],
                outputs=[upload_pretrained],
            )

            multiple_gpu.change(
                fn=toggle_visible,
                inputs=[multiple_gpu],
                outputs=[gpu_custom_settings],
            )