|
import os |
|
import glob |
|
import json |
|
import torch |
|
import argparse |
|
import numpy as np |
|
from scipy.io.wavfile import read |
|
|
|
|
|
def load_checkpoint_d(checkpoint_path, combd, sbd, optimizer=None, load_opt=1): |
|
assert os.path.isfile(checkpoint_path) |
|
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") |
|
|
|
def go(model, bkey): |
|
saved_state_dict = checkpoint_dict[bkey] |
|
if hasattr(model, "module"): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
try: |
|
new_state_dict[k] = saved_state_dict[k] |
|
if saved_state_dict[k].shape != state_dict[k].shape: |
|
print( |
|
"shape-%s-mismatch. need: %s, get: %s", |
|
k, |
|
state_dict[k].shape, |
|
saved_state_dict[k].shape, |
|
) |
|
raise KeyError |
|
except: |
|
print("%s is not in the checkpoint", k) |
|
new_state_dict[k] = v |
|
if hasattr(model, "module"): |
|
model.module.load_state_dict(new_state_dict, strict=False) |
|
else: |
|
model.load_state_dict(new_state_dict, strict=False) |
|
return model |
|
|
|
go(combd, "combd") |
|
model = go(sbd, "sbd") |
|
|
|
iteration = checkpoint_dict["iteration"] |
|
learning_rate = checkpoint_dict["learning_rate"] |
|
if optimizer is not None and load_opt == 1: |
|
optimizer.load_state_dict(checkpoint_dict["optimizer"]) |
|
|
|
print("Loaded checkpoint '{}' (epoch {})".format(checkpoint_path, iteration)) |
|
return model, optimizer, learning_rate, iteration |
|
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1): |
|
assert os.path.isfile(checkpoint_path) |
|
checkpoint_dict = torch.load(checkpoint_path, map_location="cpu") |
|
|
|
saved_state_dict = checkpoint_dict["model"] |
|
if hasattr(model, "module"): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
new_state_dict = {} |
|
for k, v in state_dict.items(): |
|
try: |
|
new_state_dict[k] = saved_state_dict[k] |
|
if saved_state_dict[k].shape != state_dict[k].shape: |
|
print( |
|
"shape-%s-mismatch|need-%s|get-%s", |
|
k, |
|
state_dict[k].shape, |
|
saved_state_dict[k].shape, |
|
) |
|
raise KeyError |
|
except: |
|
print("%s is not in the checkpoint", k) |
|
new_state_dict[k] = v |
|
if hasattr(model, "module"): |
|
model.module.load_state_dict(new_state_dict, strict=False) |
|
else: |
|
model.load_state_dict(new_state_dict, strict=False) |
|
|
|
iteration = checkpoint_dict["iteration"] |
|
learning_rate = checkpoint_dict["learning_rate"] |
|
if optimizer is not None and load_opt == 1: |
|
optimizer.load_state_dict(checkpoint_dict["optimizer"]) |
|
print(f"Loaded checkpoint '{checkpoint_path}' (epoch {iteration})") |
|
return model, optimizer, learning_rate, iteration |
|
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path): |
|
print(f"Saved model '{checkpoint_path}' (epoch {iteration})") |
|
if hasattr(model, "module"): |
|
state_dict = model.module.state_dict() |
|
else: |
|
state_dict = model.state_dict() |
|
torch.save( |
|
{ |
|
"model": state_dict, |
|
"iteration": iteration, |
|
"optimizer": optimizer.state_dict(), |
|
"learning_rate": learning_rate, |
|
}, |
|
checkpoint_path, |
|
) |
|
|
|
|
|
def summarize( |
|
writer, |
|
global_step, |
|
scalars={}, |
|
histograms={}, |
|
images={}, |
|
audios={}, |
|
audio_sampling_rate=22050, |
|
): |
|
for k, v in scalars.items(): |
|
writer.add_scalar(k, v, global_step) |
|
for k, v in histograms.items(): |
|
writer.add_histogram(k, v, global_step) |
|
for k, v in images.items(): |
|
writer.add_image(k, v, global_step, dataformats="HWC") |
|
for k, v in audios.items(): |
|
writer.add_audio(k, v, global_step, audio_sampling_rate) |
|
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"): |
|
f_list = glob.glob(os.path.join(dir_path, regex)) |
|
f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f)))) |
|
x = f_list[-1] |
|
return x |
|
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram): |
|
import matplotlib.pylab as plt |
|
import numpy as np |
|
|
|
fig, ax = plt.subplots(figsize=(10, 2)) |
|
im = ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none") |
|
plt.colorbar(im, ax=ax) |
|
plt.xlabel("Frames") |
|
plt.ylabel("Channels") |
|
plt.tight_layout() |
|
|
|
fig.canvas.draw() |
|
data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep="") |
|
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,)) |
|
plt.close() |
|
return data |
|
|
|
|
|
def load_wav_to_torch(full_path): |
|
sampling_rate, data = read(full_path) |
|
return torch.FloatTensor(data.astype(np.float32)), sampling_rate |
|
|
|
|
|
def load_filepaths_and_text(filename, split="|"): |
|
with open(filename, encoding="utf-8") as f: |
|
filepaths_and_text = [line.strip().split(split) for line in f] |
|
return filepaths_and_text |
|
|
|
|
|
def get_hparams(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"-se", |
|
"--save_every_epoch", |
|
type=int, |
|
required=True, |
|
help="checkpoint save frequency (epoch)", |
|
) |
|
parser.add_argument( |
|
"-te", "--total_epoch", type=int, required=True, help="total_epoch" |
|
) |
|
parser.add_argument( |
|
"-pg", "--pretrainG", type=str, default="", help="Pretrained Discriminator path" |
|
) |
|
parser.add_argument( |
|
"-pd", "--pretrainD", type=str, default="", help="Pretrained Generator path" |
|
) |
|
parser.add_argument("-g", "--gpus", type=str, default="0", help="split by -") |
|
parser.add_argument( |
|
"-bs", "--batch_size", type=int, required=True, help="batch size" |
|
) |
|
parser.add_argument( |
|
"-e", "--experiment_dir", type=str, required=True, help="experiment dir" |
|
) |
|
parser.add_argument( |
|
"-sr", "--sample_rate", type=str, required=True, help="sample rate, 32k/40k/48k" |
|
) |
|
parser.add_argument( |
|
"-sw", |
|
"--save_every_weights", |
|
type=str, |
|
default="0", |
|
help="save the extracted model in weights directory when saving checkpoints", |
|
) |
|
parser.add_argument( |
|
"-v", "--version", type=str, required=True, help="model version" |
|
) |
|
parser.add_argument( |
|
"-f0", |
|
"--if_f0", |
|
type=int, |
|
required=True, |
|
help="use f0 as one of the inputs of the model, 1 or 0", |
|
) |
|
parser.add_argument( |
|
"-l", |
|
"--if_latest", |
|
type=int, |
|
required=True, |
|
help="if only save the latest G/D pth file, 1 or 0", |
|
) |
|
parser.add_argument( |
|
"-c", |
|
"--if_cache_data_in_gpu", |
|
type=int, |
|
required=True, |
|
help="if caching the dataset in GPU memory, 1 or 0", |
|
) |
|
args = parser.parse_args() |
|
name = args.experiment_dir |
|
experiment_dir = os.path.join("./logs", args.experiment_dir) |
|
config_save_path = os.path.join(experiment_dir, "config.json") |
|
with open(config_save_path, "r") as f: |
|
config = json.load(f) |
|
hparams = HParams(**config) |
|
hparams.model_dir = hparams.experiment_dir = experiment_dir |
|
hparams.save_every_epoch = args.save_every_epoch |
|
hparams.name = name |
|
hparams.total_epoch = args.total_epoch |
|
hparams.pretrainG = args.pretrainG |
|
hparams.pretrainD = args.pretrainD |
|
hparams.version = args.version |
|
hparams.gpus = args.gpus |
|
hparams.train.batch_size = args.batch_size |
|
hparams.sample_rate = args.sample_rate |
|
hparams.if_f0 = args.if_f0 |
|
hparams.if_latest = args.if_latest |
|
hparams.save_every_weights = args.save_every_weights |
|
hparams.if_cache_data_in_gpu = args.if_cache_data_in_gpu |
|
hparams.data.training_files = f"{experiment_dir}/filelist.txt" |
|
return hparams |
|
|
|
|
|
class HParams: |
|
def __init__(self, **kwargs): |
|
for k, v in kwargs.items(): |
|
if type(v) == dict: |
|
v = HParams(**v) |
|
self[k] = v |
|
|
|
def keys(self): |
|
return self.__dict__.keys() |
|
|
|
def items(self): |
|
return self.__dict__.items() |
|
|
|
def values(self): |
|
return self.__dict__.values() |
|
|
|
def __len__(self): |
|
return len(self.__dict__) |
|
|
|
def __getitem__(self, key): |
|
return getattr(self, key) |
|
|
|
def __setitem__(self, key, value): |
|
return setattr(self, key, value) |
|
|
|
def __contains__(self, key): |
|
return key in self.__dict__ |
|
|
|
def __repr__(self): |
|
return self.__dict__.__repr__() |
|
|