|
import numpy as np |
|
|
|
|
|
class Slicer: |
|
def __init__( |
|
self, |
|
sr: int, |
|
threshold: float = -40.0, |
|
min_length: int = 5000, |
|
min_interval: int = 300, |
|
hop_size: int = 20, |
|
max_sil_kept: int = 5000, |
|
): |
|
if not min_length >= min_interval >= hop_size: |
|
raise ValueError("min_length >= min_interval >= hop_size is required") |
|
if not max_sil_kept >= hop_size: |
|
raise ValueError("max_sil_kept >= hop_size is required") |
|
|
|
min_interval = sr * min_interval / 1000 |
|
self.threshold = 10 ** (threshold / 20.0) |
|
self.hop_size = round(sr * hop_size / 1000) |
|
self.win_size = min(round(min_interval), 4 * self.hop_size) |
|
self.min_length = round(sr * min_length / 1000 / self.hop_size) |
|
self.min_interval = round(min_interval / self.hop_size) |
|
self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size) |
|
|
|
def _apply_slice(self, waveform, begin, end): |
|
start_idx = begin * self.hop_size |
|
if len(waveform.shape) > 1: |
|
end_idx = min(waveform.shape[1], end * self.hop_size) |
|
return waveform[:, start_idx:end_idx] |
|
else: |
|
end_idx = min(waveform.shape[0], end * self.hop_size) |
|
return waveform[start_idx:end_idx] |
|
|
|
def slice(self, waveform): |
|
samples = waveform.mean(axis=0) if len(waveform.shape) > 1 else waveform |
|
if samples.shape[0] <= self.min_length: |
|
return [waveform] |
|
|
|
rms_list = get_rms( |
|
y=samples, frame_length=self.win_size, hop_length=self.hop_size |
|
).squeeze(0) |
|
sil_tags = [] |
|
silence_start, clip_start = None, 0 |
|
|
|
for i, rms in enumerate(rms_list): |
|
if rms < self.threshold: |
|
if silence_start is None: |
|
silence_start = i |
|
continue |
|
|
|
if silence_start is None: |
|
continue |
|
|
|
is_leading_silence = silence_start == 0 and i > self.max_sil_kept |
|
need_slice_middle = ( |
|
i - silence_start >= self.min_interval |
|
and i - clip_start >= self.min_length |
|
) |
|
|
|
if not is_leading_silence and not need_slice_middle: |
|
silence_start = None |
|
continue |
|
|
|
if i - silence_start <= self.max_sil_kept: |
|
pos = rms_list[silence_start : i + 1].argmin() + silence_start |
|
if silence_start == 0: |
|
sil_tags.append((0, pos)) |
|
else: |
|
sil_tags.append((pos, pos)) |
|
clip_start = pos |
|
elif i - silence_start <= self.max_sil_kept * 2: |
|
pos = rms_list[ |
|
i - self.max_sil_kept : silence_start + self.max_sil_kept + 1 |
|
].argmin() |
|
pos += i - self.max_sil_kept |
|
pos_l = ( |
|
rms_list[ |
|
silence_start : silence_start + self.max_sil_kept + 1 |
|
].argmin() |
|
+ silence_start |
|
) |
|
pos_r = ( |
|
rms_list[i - self.max_sil_kept : i + 1].argmin() |
|
+ i |
|
- self.max_sil_kept |
|
) |
|
if silence_start == 0: |
|
sil_tags.append((0, pos_r)) |
|
clip_start = pos_r |
|
else: |
|
sil_tags.append((min(pos_l, pos), max(pos_r, pos))) |
|
clip_start = max(pos_r, pos) |
|
else: |
|
pos_l = ( |
|
rms_list[ |
|
silence_start : silence_start + self.max_sil_kept + 1 |
|
].argmin() |
|
+ silence_start |
|
) |
|
pos_r = ( |
|
rms_list[i - self.max_sil_kept : i + 1].argmin() |
|
+ i |
|
- self.max_sil_kept |
|
) |
|
if silence_start == 0: |
|
sil_tags.append((0, pos_r)) |
|
else: |
|
sil_tags.append((pos_l, pos_r)) |
|
clip_start = pos_r |
|
silence_start = None |
|
|
|
total_frames = rms_list.shape[0] |
|
|
|
if ( |
|
silence_start is not None |
|
and total_frames - silence_start >= self.min_interval |
|
): |
|
silence_end = min(total_frames, silence_start + self.max_sil_kept) |
|
pos = rms_list[silence_start : silence_end + 1].argmin() + silence_start |
|
sil_tags.append((pos, total_frames + 1)) |
|
|
|
if not sil_tags: |
|
return [waveform] |
|
else: |
|
chunks = [] |
|
if sil_tags[0][0] > 0: |
|
chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0])) |
|
|
|
for i in range(len(sil_tags) - 1): |
|
chunks.append( |
|
self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]) |
|
) |
|
|
|
if sil_tags[-1][1] < total_frames: |
|
chunks.append( |
|
self._apply_slice(waveform, sil_tags[-1][1], total_frames) |
|
) |
|
|
|
return chunks |
|
|
|
|
|
def get_rms( |
|
y, |
|
frame_length=2048, |
|
hop_length=512, |
|
pad_mode="constant", |
|
): |
|
padding = (int(frame_length // 2), int(frame_length // 2)) |
|
y = np.pad(y, padding, mode=pad_mode) |
|
|
|
axis = -1 |
|
out_strides = y.strides + tuple([y.strides[axis]]) |
|
x_shape_trimmed = list(y.shape) |
|
x_shape_trimmed[axis] -= frame_length - 1 |
|
out_shape = tuple(x_shape_trimmed) + tuple([frame_length]) |
|
xw = np.lib.stride_tricks.as_strided(y, shape=out_shape, strides=out_strides) |
|
|
|
if axis < 0: |
|
target_axis = axis - 1 |
|
else: |
|
target_axis = axis + 1 |
|
|
|
xw = np.moveaxis(xw, -1, target_axis) |
|
slices = [slice(None)] * xw.ndim |
|
slices[axis] = slice(0, None, hop_length) |
|
x = xw[tuple(slices)] |
|
|
|
power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True) |
|
return np.sqrt(power) |
|
|