import os, sys import gradio as gr import regex as re import json import shutil import datetime import random from core import ( run_tts_script, ) from assets.i18n.i18n import I18nAuto i18n = I18nAuto() now_dir = os.getcwd() sys.path.append(now_dir) model_root = os.path.join(now_dir, "logs") audio_root = os.path.join(now_dir, "assets", "audios") model_root_relative = os.path.relpath(model_root, now_dir) audio_root_relative = os.path.relpath(audio_root, now_dir) sup_audioext = { "wav", "mp3", "flac", "ogg", "opus", "m4a", "mp4", "aac", "alac", "wma", "aiff", "webm", "ac3", } names = [ os.path.join(root, file) for root, _, files in os.walk(model_root_relative, topdown=False) for file in files if ( file.endswith((".pth", ".onnx")) and not (file.startswith("G_") or file.startswith("D_")) ) ] indexes_list = [ os.path.join(root, name) for root, _, files in os.walk(model_root_relative, topdown=False) for name in files if name.endswith(".index") and "trained" not in name ] audio_paths = [ os.path.join(root, name) for root, _, files in os.walk(audio_root_relative, topdown=False) for name in files if name.endswith(tuple(sup_audioext)) and root == audio_root_relative and "_output" not in name ] def change_choices(): names = [ os.path.join(root, file) for root, _, files in os.walk(model_root_relative, topdown=False) for file in files if ( file.endswith((".pth", ".onnx")) and not (file.startswith("G_") or file.startswith("D_")) ) ] indexes_list = [ os.path.join(root, name) for root, _, files in os.walk(model_root_relative, topdown=False) for name in files if name.endswith(".index") and "trained" not in name ] audio_paths = [ os.path.join(root, name) for root, _, files in os.walk(audio_root_relative, topdown=False) for name in files if name.endswith(tuple(sup_audioext)) and root == audio_root_relative and "_output" not in name ] return ( {"choices": sorted(names), "__type__": "update"}, {"choices": sorted(indexes_list), "__type__": "update"}, {"choices": sorted(audio_paths), "__type__": "update"}, ) def get_indexes(): indexes_list = [ os.path.join(dirpath, filename) for dirpath, _, filenames in os.walk(model_root_relative) for filename in filenames if filename.endswith(".index") and "trained" not in filename ] return indexes_list if indexes_list else "" def match_index(model_file: str) -> tuple: model_files_trip = re.sub(r"\.pth|\.onnx$", "", model_file) model_file_name = os.path.split(model_files_trip)[ -1 ] # Extract only the name, not the directory # Check if the sid0strip has the specific ending format _eXXX_sXXX if re.match(r".+_e\d+_s\d+$", model_file_name): base_model_name = model_file_name.rsplit("_", 2)[0] else: base_model_name = model_file_name sid_directory = os.path.join(model_root_relative, base_model_name) directories_to_search = [sid_directory] if os.path.exists(sid_directory) else [] directories_to_search.append(model_root_relative) matching_index_files = [] for directory in directories_to_search: for filename in os.listdir(directory): if filename.endswith(".index") and "trained" not in filename: # Condition to match the name name_match = any( name.lower() in filename.lower() for name in [model_file_name, base_model_name] ) # If in the specific directory, it's automatically a match folder_match = directory == sid_directory if name_match or folder_match: index_path = os.path.join(directory, filename) if index_path in indexes_list: matching_index_files.append( ( index_path, os.path.getsize(index_path), " " not in filename, ) ) if matching_index_files: # Sort by favoring files without spaces and by size (largest size first) matching_index_files.sort(key=lambda x: (-x[2], -x[1])) best_match_index_path = matching_index_files[0][0] return best_match_index_path return "" def save_to_wav(record_button): if record_button is None: pass else: path_to_file = record_button new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + ".wav" target_path = os.path.join(audio_root_relative, os.path.basename(new_name)) shutil.move(path_to_file, target_path) return target_path def save_to_wav2(upload_audio): file_path = upload_audio target_path = os.path.join(audio_root_relative, os.path.basename(file_path)) if os.path.exists(target_path): os.remove(target_path) shutil.copy(file_path, target_path) return target_path def delete_outputs(): for root, _, files in os.walk(audio_root_relative, topdown=False): for name in files: if name.endswith(tuple(sup_audioext)) and name.__contains__("_output"): os.remove(os.path.join(root, name)) gr.Info(f"Outputs cleared!") def tts_tab(): default_weight = random.choice(names) if names else "" with gr.Row(): with gr.Row(): model_file = gr.Dropdown( label=i18n("Voice Model"), choices=sorted(names, key=lambda path: os.path.getsize(path)), interactive=True, value=default_weight, allow_custom_value=True, ) best_default_index_path = match_index(model_file.value) index_file = gr.Dropdown( label=i18n("Index File"), choices=get_indexes(), value=best_default_index_path, interactive=True, allow_custom_value=True, ) with gr.Column(): refresh_button = gr.Button(i18n("Refresh")) unload_button = gr.Button(i18n("Unload Voice")) unload_button.click( fn=lambda: ({"value": "", "__type__": "update"}), inputs=[], outputs=[model_file], ) model_file.select( fn=match_index, inputs=[model_file], outputs=[index_file], ) json_path = os.path.join("rvc", "lib", "tools", "tts_voices.json") with open(json_path, "r") as file: tts_voices_data = json.load(file) short_names = [voice.get("ShortName", "") for voice in tts_voices_data] tts_voice = gr.Dropdown( label=i18n("TTS Voices"), choices=short_names, interactive=True, value=None, ) tts_text = gr.Textbox( label=i18n("Text to Synthesize"), placeholder=i18n("Enter text to synthesize"), lines=3, ) with gr.Accordion(i18n("Advanced Settings"), open=False): with gr.Column(): output_tts_path = gr.Textbox( label=i18n("Output Path for TTS Audio"), placeholder=i18n("Enter output path"), value=os.path.join(now_dir, "assets", "audios", "tts_output.wav"), interactive=True, ) output_rvc_path = gr.Textbox( label=i18n("Output Path for RVC Audio"), placeholder=i18n("Enter output path"), value=os.path.join(now_dir, "assets", "audios", "tts_rvc_output.wav"), interactive=True, ) pitch = gr.Slider( minimum=-24, maximum=24, step=1, label=i18n("Pitch"), value=0, interactive=True, ) filter_radius = gr.Slider( minimum=0, maximum=7, label=i18n( "If >=3: apply median filtering to the harvested pitch results. The value represents the filter radius and can reduce breathiness" ), value=3, step=1, interactive=True, ) index_rate = gr.Slider( minimum=0, maximum=1, label=i18n("Search Feature Ratio"), value=0.75, interactive=True, ) hop_length = gr.Slider( minimum=1, maximum=512, step=1, label=i18n("Hop Length"), value=128, interactive=True, ) with gr.Column(): f0method = gr.Radio( label=i18n("Pitch extraction algorithm"), choices=[ "pm", "harvest", "dio", "crepe", "crepe-tiny", "rmvpe", ], value="rmvpe", interactive=True, ) convert_button1 = gr.Button(i18n("Convert")) with gr.Row(): # Defines output info + output audio download after conversion vc_output1 = gr.Textbox(label=i18n("Output Information")) vc_output2 = gr.Audio(label=i18n("Export Audio")) refresh_button.click( fn=change_choices, inputs=[], outputs=[model_file, index_file], ) convert_button1.click( fn=run_tts_script, inputs=[ tts_text, tts_voice, pitch, filter_radius, index_rate, hop_length, f0method, output_tts_path, output_rvc_path, model_file, index_file, ], outputs=[vc_output1, vc_output2], )