Spaces:
Runtime error
Runtime error
PhuongPhan
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import spaces
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
from transformers import pipeline
|
6 |
+
from huggingface_hub import model_info
|
7 |
+
|
8 |
+
MODEL_NAME = "openai/whisper-small"
|
9 |
+
|
10 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
11 |
+
pipe = pipeline(
|
12 |
+
task="automatic-speech-recognition",
|
13 |
+
model=MODEL_NAME,
|
14 |
+
chunk_length_s=30,
|
15 |
+
device=device,
|
16 |
+
)
|
17 |
+
|
18 |
+
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids( task="transcribe")
|
19 |
+
|
20 |
+
@spaces.GPU(duration=240)
|
21 |
+
def transcribe(mic, file_upload):
|
22 |
+
|
23 |
+
file = mic if mic is not None else file_upload
|
24 |
+
|
25 |
+
text = pipe(file)["text"]
|
26 |
+
return text
|
27 |
+
|
28 |
+
|
29 |
+
#---------------------------------------------------------------
|
30 |
+
import ctranslate2
|
31 |
+
import gradio as gr
|
32 |
+
from huggingface_hub import snapshot_download
|
33 |
+
from sentencepiece import SentencePieceProcessor
|
34 |
+
|
35 |
+
model_name = "santhosh/madlad400-3b-ct2"
|
36 |
+
model_path = snapshot_download(model_name)
|
37 |
+
|
38 |
+
tokenizer = SentencePieceProcessor()
|
39 |
+
tokenizer.load(f"{model_path}/sentencepiece.model")
|
40 |
+
translator = ctranslate2.Translator(model_path)
|
41 |
+
tokens = [tokenizer.decode(i) for i in range(460)]
|
42 |
+
lang_codes = [token[2:-1] for token in tokens if token.startswith("<2")]
|
43 |
+
|
44 |
+
|
45 |
+
@spaces.GPU(duration=240)
|
46 |
+
def translate(input_text, target_language):
|
47 |
+
input_tokens = tokenizer.encode(f"<2{target_language}> {input_text}", out_type=str)
|
48 |
+
results = translator.translate_batch(
|
49 |
+
[input_tokens],
|
50 |
+
batch_type="tokens",
|
51 |
+
beam_size=1,
|
52 |
+
no_repeat_ngram_size=1,
|
53 |
+
)
|
54 |
+
translated_sentence = tokenizer.decode(results[0].hypotheses[0])
|
55 |
+
return translated_sentence
|
56 |
+
|
57 |
+
|
58 |
+
@spaces.GPU(duration=240)
|
59 |
+
def translate_interface(input_text, target_language):
|
60 |
+
translated_text = translate(input_text, target_language)
|
61 |
+
return translated_text
|
62 |
+
|
63 |
+
|
64 |
+
with gr.Blocks() as demo:
|
65 |
+
with gr.Column():
|
66 |
+
gr.Markdown(
|
67 |
+
"""
|
68 |
+
|
69 |
+
<div style="text-align: left;">
|
70 |
+
<a href='https://huggingface.co/PhuongPhan'><img style='display: inline-block; margin: 0; padding: 0;' src='https://huggingface.co/datasets/huggingface/badges/resolve/main/follow-me-on-HF-sm-dark.svg' alt='Follow me on HF'></a>
|
71 |
+
<a href='https://huggingface.co/Chunte'><img style='display: inline-block; margin: 0; padding: 0;' src='https://img.shields.io/badge/GitHub%20Pages-121013?logo=github&logoColor=white' alt='GitHub Pages'></a>
|
72 |
+
</div>
|
73 |
+
|
74 |
+
""" )
|
75 |
+
|
76 |
+
gr.Markdown("<h1 style='text-align: center;'>π€ Speech to Text & Translation π£οΈ</h1>")
|
77 |
+
|
78 |
+
gr.HTML(
|
79 |
+
"<p style='text-align: center'>"
|
80 |
+
"π€ <a href='https://huggingface.co/openai/whisper-small' target='_blank'>OpenAI Whisper</a> | "
|
81 |
+
"π§βπ» <a href='https://huggingface.co/google/madlad400-3b-mt' target='_blank'>Google Madlad</a>"
|
82 |
+
"</p>")
|
83 |
+
|
84 |
+
gr.Markdown("<p style='text-align: center;'><i>Upload an audio file or use your microphone to transcribe speech and then translate it to different languages.</i></p>")
|
85 |
+
|
86 |
+
with gr.Row():
|
87 |
+
# First interface for transcription
|
88 |
+
gr.Markdown("## ποΈ Transcribe Audio ")
|
89 |
+
gr.Markdown("---")
|
90 |
+
audio_input = gr.Audio(sources=["upload", "microphone"], type="filepath")
|
91 |
+
transcribe_button = gr.Button("Transcribe")
|
92 |
+
transcribed_output = gr.Textbox(label="Transcribed Text")
|
93 |
+
transcribe_button.click(transcribe, inputs=audio_input, outputs=transcribed_output)
|
94 |
+
|
95 |
+
with gr.Row():
|
96 |
+
# Second interface for translation
|
97 |
+
gr.Markdown("## π Translate Text π")
|
98 |
+
gr.Markdown("---")
|
99 |
+
lang_dropdown = gr.Dropdown(lang_codes, value="en", label="Target Language")
|
100 |
+
translate_button = gr.Button("Translate")
|
101 |
+
translated_output = gr.Textbox(label="Translated Text")
|
102 |
+
translate_button.click(translate_interface, inputs=[transcribed_output, lang_dropdown], outputs=translated_output)
|
103 |
+
|
104 |
+
gr.Markdown("---")
|
105 |
+
with gr.Accordion("See Details", open = False):
|
106 |
+
|
107 |
+
gr.Markdown("---")
|
108 |
+
gr.Markdown('''
|
109 |
+
|
110 |
+
## Description π
|
111 |
+
|
112 |
+
> Using OpenAI Whisper Base model to transcribe audio files into text Google Madlad model to translate transcribed texts into multiple languages.
|
113 |
+
> Enabling users to convert spoken words into written text.
|
114 |
+
> Supporting various use cases, including transcription of audio files, detection of phrases, speech-to-text generation, and translation of text.
|
115 |
+
|
116 |
+
## How it Works π«Ά
|
117 |
+
|
118 |
+
- Upload an audio file or record a new one directly in the app.
|
119 |
+
- Transcribe the audio into text, allow copy and paste function for further use.
|
120 |
+
- Or/ Translates the transcribed text into multiple languages.
|
121 |
+
|
122 |
+
## Usage π€
|
123 |
+
|
124 |
+
1. Transcribe audio files for note-taking, research, or content creation
|
125 |
+
2. Detect phrases or keywords in audio recordings for data analysis or market research
|
126 |
+
3. Generate text from speech for speech-to-text applications, such as subtitles, closed captions, or voice assistants
|
127 |
+
4. Use the app for language learning, by transcribing audio files in a foreign language and practicing pronunciation
|
128 |
+
5. Translate the transcribed text into multiple languages for global communication
|
129 |
+
|
130 |
+
## Disclaimer π
ββοΈ
|
131 |
+
|
132 |
+
> This app is for personal use only and should not be used for commercial purposes.
|
133 |
+
The OpenAI Whisper Base model and Google Madlad model are pre-trained models and may not always produce accurate results. ''')
|
134 |
+
|
135 |
+
demo.queue(max_size=20)
|
136 |
+
demo.launch()
|