Update app.py with transformer embeddings and prediction pipeline
Browse files
app.py
CHANGED
@@ -97,7 +97,8 @@ def process_target(target, selected_models, sequence, prediction_type):
|
|
97 |
|
98 |
# Generate embeddings in the required format
|
99 |
embedding, _ = get_embedding(sequence, esm_model_name, layer)
|
100 |
-
|
|
|
101 |
if prediction_type == "Plant-Specific":
|
102 |
# Random Forest prediction
|
103 |
y_pred = model.predict(embedding)[0]
|
|
|
97 |
|
98 |
# Generate embeddings in the required format
|
99 |
embedding, _ = get_embedding(sequence, esm_model_name, layer)
|
100 |
+
embedding = embedding.astype(np.float64)
|
101 |
+
np.save(f"hf_embedding_{target}.npy", embedding)
|
102 |
if prediction_type == "Plant-Specific":
|
103 |
# Random Forest prediction
|
104 |
y_pred = model.predict(embedding)[0]
|