rome / app.py
Pie31415's picture
fixed app issue
54e0381
raw
history blame
4.4 kB
import os, sys
import torch
import argparse
import numpy as np
import torch
import matplotlib.pyplot as plt
from PIL import Image
from rome.src.utils import args as args_utils
from rome.src.utils.processing import process_black_shape, tensor2image
sys.path.append("./rome/")
sys.path.append('./DECA')
# loading models ---- create model repo
from huggingface_hub import hf_hub_download
default_modnet_path = hf_hub_download('Pie31415/rome','modnet_photographic_portrait_matting.ckpt')
default_model_path = hf_hub_download('Pie31415/rome','rome.pth')
# parser configurations
from easydict import EasyDict as edict
args = edict({
"save_dir": ".",
"save_render": True,
"model_checkpoint": default_model_path,
"modnet_path": default_modnet_path,
"random_seed": 0,
"debug": False,
"verbose": False,
"model_image_size": 256,
"align_source": True,
"align_target": False,
"align_scale": 1.25,
"use_mesh_deformations": False,
"subdivide_mesh": False,
"renderer_sigma": 1e-08,
"renderer_zfar": 100.0,
"renderer_type": "soft_mesh",
"renderer_texture_type": "texture_uv",
"renderer_normalized_alphas": False,
"deca_path": "DECA",
"rome_data_dir": "rome/data",
"autoenc_cat_alphas": False,
"autoenc_align_inputs": False,
"autoenc_use_warp": False,
"autoenc_num_channels": 64,
"autoenc_max_channels": 512,
"autoenc_num_groups": 4,
"autoenc_num_bottleneck_groups": 0,
"autoenc_num_blocks": 2,
"autoenc_num_layers": 4,
"autoenc_block_type": "bottleneck",
"neural_texture_channels": 8,
"num_harmonic_encoding_funcs": 6,
"unet_num_channels": 64,
"unet_max_channels": 512,
"unet_num_groups": 4,
"unet_num_blocks": 1,
"unet_num_layers": 2,
"unet_block_type": "conv",
"unet_skip_connection_type": "cat",
"unet_use_normals_cond": True,
"unet_use_vertex_cond": False,
"unet_use_uvs_cond": False,
"unet_pred_mask": False,
"use_separate_seg_unet": True,
"norm_layer_type": "gn",
"activation_type": "relu",
"conv_layer_type": "ws_conv",
"deform_norm_layer_type": "gn",
"deform_activation_type": "relu",
"deform_conv_layer_type": "ws_conv",
"unet_seg_weight": 0.0,
"unet_seg_type": "bce_with_logits",
"deform_face_tightness": 0.0001,
"use_whole_segmentation": False,
"mask_hair_for_neck": False,
"use_hair_from_avatar": False,
"use_scalp_deforms": True,
"use_neck_deforms": True,
"use_basis_deformer": False,
"use_unet_deformer": True,
"pretrained_encoder_basis_path": "",
"pretrained_vertex_basis_path": "",
"num_basis": 50,
"basis_init": "pca",
"num_vertex": 5023,
"train_basis": True,
"path_to_deca": "DECA",
"path_to_linear_hair_model": "data/linear_hair.pth", # N/A
"path_to_mobile_model": "data/disp_model.pth", # N/A
"n_scalp": 60,
"use_distill": False,
"use_mobile_version": False,
"deformer_path": "data/rome.pth",
"output_unet_deformer_feats": 32,
"use_deca_details": False,
"use_flametex": False,
"upsample_type": "nearest",
"num_frequencies": 6,
"deform_face_scale_coef": 0.0,
"device": "cpu"
})
# download FLAME and DECA pretrained
generic_model_path = hf_hub_download('Pie31415/rome','generic_model.pkl')
deca_model_path = hf_hub_download('Pie31415/rome','deca_model.tar')
import pickle
with open(generic_model_path, 'rb') as f:
ss = pickle.load(f, encoding='latin1')
with open('./DECA/data/generic_model.pkl', 'wb') as out:
pickle.dump(ss, out)
with open(deca_model_path, "rb") as input:
with open('./DECA/data/deca_model.tar', "wb") as out:
for line in input:
out.write(line)
# load ROME inference model
from rome.infer import Infer
infer = Infer(args)
def predict(source_img, driver_img):
out = infer.evaluate(source_img, driver_img, crop_center=False)
res = tensor2image(torch.cat([out['source_information']['data_dict']['source_img'][0].cpu(),
out['source_information']['data_dict']['target_img'][0].cpu(),
out['render_masked'].cpu(), out['pred_target_shape_img'][0].cpu()], dim=2))
return res[..., ::-1]
import gradio as gr
gr.Interface(
fn=predict,
inputs=[
gr.Image(type="pil"),
gr.Image(type="pil")
],
outputs=gr.Image(),
examples=[]).launch()