Spaces:
Sleeping
Sleeping
pminervini
commited on
Commit
•
5de566b
1
Parent(s):
5b449d8
update
Browse files
app.py
CHANGED
@@ -8,12 +8,6 @@ es = Elasticsearch(hosts=["https://data.neuralnoise.com:9200"],
|
|
8 |
basic_auth=('elastic', os.environ['ES_PASSWORD']),
|
9 |
verify_certs=False, ssl_show_warn=False)
|
10 |
|
11 |
-
# model_name = "mistralai/Mistral-7B-Instruct-v0.2"
|
12 |
-
model_name = "HuggingFaceH4/zephyr-7b-beta"
|
13 |
-
|
14 |
-
# Load your language model from HuggingFace Transformers
|
15 |
-
generator = pipeline("text-generation", model=model_name)
|
16 |
-
|
17 |
def search(query, index="pubmed", num_results=3):
|
18 |
"""
|
19 |
Search the Elasticsearch index for the most relevant documents.
|
@@ -34,14 +28,17 @@ def search(query, index="pubmed", num_results=3):
|
|
34 |
# Extract and return the documents
|
35 |
docs = [hit["_source"]["content"] for hit in response['hits']['hits']]
|
36 |
|
37 |
-
print(f'Received {len(docs)} documents')
|
38 |
|
39 |
return docs
|
40 |
|
41 |
-
def rag_pipeline(prompt, index="pubmed"):
|
42 |
"""
|
43 |
A simple RAG pipeline that retrieves documents and uses them to enrich the context for the LLM.
|
44 |
"""
|
|
|
|
|
|
|
45 |
# Retrieve documents
|
46 |
docs = search(prompt, index=index)
|
47 |
joined_docs = '\n\n'.join(docs)
|
@@ -69,7 +66,8 @@ def rag_pipeline(prompt, index="pubmed"):
|
|
69 |
iface = gr.Interface(fn=rag_pipeline,
|
70 |
inputs=[
|
71 |
gr.Textbox(label="Input Prompt", value="Are group 2 innate lymphoid cells (ILC2s) increased in chronic rhinosinusitis with nasal polyps or eosinophilia?"),
|
72 |
-
gr.Dropdown(label="
|
|
|
73 |
],
|
74 |
outputs=[
|
75 |
gr.Textbox(label="Generated Text"),
|
|
|
8 |
basic_auth=('elastic', os.environ['ES_PASSWORD']),
|
9 |
verify_certs=False, ssl_show_warn=False)
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
def search(query, index="pubmed", num_results=3):
|
12 |
"""
|
13 |
Search the Elasticsearch index for the most relevant documents.
|
|
|
28 |
# Extract and return the documents
|
29 |
docs = [hit["_source"]["content"] for hit in response['hits']['hits']]
|
30 |
|
31 |
+
print(f'Received {len(docs)} documents from index {index}')
|
32 |
|
33 |
return docs
|
34 |
|
35 |
+
def rag_pipeline(prompt, index="pubmed", model_name="HuggingFaceH4/zephyr-7b-beta"):
|
36 |
"""
|
37 |
A simple RAG pipeline that retrieves documents and uses them to enrich the context for the LLM.
|
38 |
"""
|
39 |
+
# Load your language model from HuggingFace Transformers
|
40 |
+
generator = pipeline("text-generation", model=model_name)
|
41 |
+
|
42 |
# Retrieve documents
|
43 |
docs = search(prompt, index=index)
|
44 |
joined_docs = '\n\n'.join(docs)
|
|
|
66 |
iface = gr.Interface(fn=rag_pipeline,
|
67 |
inputs=[
|
68 |
gr.Textbox(label="Input Prompt", value="Are group 2 innate lymphoid cells (ILC2s) increased in chronic rhinosinusitis with nasal polyps or eosinophilia?"),
|
69 |
+
gr.Dropdown(label="Index", choices=["pubmed", "wikipedia", "textbooks"], value="pubmed"),
|
70 |
+
gr.Dropdown(label="Model", choices=["HuggingFaceH4/zephyr-7b-beta", "meta-llama/Llama-2-7b-chat-hf", "meta-llama/Llama-2-13b-chat-hf", "meta-llama/Llama-2-70b-chat-hf"], value="HuggingFaceH4/zephyr-7b-beta")
|
71 |
],
|
72 |
outputs=[
|
73 |
gr.Textbox(label="Generated Text"),
|