File size: 2,817 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""

Miscellaneous utility functions

"""

import torch


def cat(tensors, dim=0):
    """

    Efficient version of torch.cat that avoids a copy if there is only a single element in a list

    """
    assert isinstance(tensors, (list, tuple))
    if len(tensors) == 1:
        return tensors[0]
    return torch.cat(tensors, dim)


def permute_and_flatten(layer, N, A, C, H, W):
    layer = layer.view(N, -1, C, H, W)
    layer = layer.permute(0, 3, 4, 1, 2)
    layer = layer.reshape(N, -1, C)
    return layer


def concat_box_prediction_layers(box_regression, box_cls=None, token_logits=None):
    box_regression_flattened = []
    box_cls_flattened = []
    token_logit_flattened = []

    # for each feature level, permute the outputs to make them be in the
    # same format as the labels. Note that the labels are computed for
    # all feature levels concatenated, so we keep the same representation
    # for the objectness and the box_regression
    for box_cls_per_level, box_regression_per_level in zip(
            box_cls, box_regression
    ):
        N, AxC, H, W = box_cls_per_level.shape
        Ax4 = box_regression_per_level.shape[1]
        A = Ax4 // 4
        C = AxC // A
        box_cls_per_level = permute_and_flatten(
            box_cls_per_level, N, A, C, H, W
        )
        box_cls_flattened.append(box_cls_per_level)

        box_regression_per_level = permute_and_flatten(
            box_regression_per_level, N, A, 4, H, W
        )
        box_regression_flattened.append(box_regression_per_level)

    if token_logits is not None:
        for token_logit_per_level in token_logits:
            N, AXT, H, W = token_logit_per_level.shape
            T = AXT // A
            token_logit_per_level = permute_and_flatten(
                token_logit_per_level, N, A, T, H, W
            )
            token_logit_flattened.append(token_logit_per_level)

    # concatenate on the first dimension (representing the feature levels), to
    # take into account the way the labels were generated (with all feature maps
    # being concatenated as well)
    box_cls = cat(box_cls_flattened, dim=1).reshape(-1, C)
    box_regression = cat(box_regression_flattened, dim=1).reshape(-1, 4)

    token_logits_stacked = None
    if token_logits is not None:
        # stacked
        token_logits_stacked = cat(token_logit_flattened, dim=1)

    return box_regression, box_cls, token_logits_stacked


def round_channels(channels, divisor=8):
    rounded_channels = max(int(channels + divisor / 2.0) // divisor * divisor, divisor)
    if float(rounded_channels) < 0.9 * channels:
        rounded_channels += divisor
    return rounded_channels