File size: 3,462 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import math

import torch


class BoxCoder(object):
    """

    This class encodes and decodes a set of bounding boxes into

    the representation used for training the regressors.

    """

    def __init__(self, weights, bbox_xform_clip=math.log(1000. / 16)):
        """

        Arguments:

            weights (4-element tuple)

            bbox_xform_clip (float)

        """
        self.weights = weights
        self.bbox_xform_clip = bbox_xform_clip

    def encode(self, reference_boxes, proposals):
        """

        Encode a set of proposals with respect to some

        reference boxes



        Arguments:

            reference_boxes (Tensor): reference boxes

            proposals (Tensor): boxes to be encoded

        """

        TO_REMOVE = 1  # TODO remove
        ex_widths = proposals[:, 2] - proposals[:, 0] + TO_REMOVE
        ex_heights = proposals[:, 3] - proposals[:, 1] + TO_REMOVE
        ex_ctr_x = proposals[:, 0] + 0.5 * ex_widths
        ex_ctr_y = proposals[:, 1] + 0.5 * ex_heights

        gt_widths = reference_boxes[:, 2] - reference_boxes[:, 0] + TO_REMOVE
        gt_heights = reference_boxes[:, 3] - reference_boxes[:, 1] + TO_REMOVE
        gt_ctr_x = reference_boxes[:, 0] + 0.5 * gt_widths
        gt_ctr_y = reference_boxes[:, 1] + 0.5 * gt_heights

        wx, wy, ww, wh = self.weights
        targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths
        targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights
        targets_dw = ww * torch.log(gt_widths / ex_widths)
        targets_dh = wh * torch.log(gt_heights / ex_heights)

        targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1)
        return targets

    def decode(self, rel_codes, boxes):
        """

        From a set of original boxes and encoded relative box offsets,

        get the decoded boxes.



        Arguments:

            rel_codes (Tensor): encoded boxes

            boxes (Tensor): reference boxes.

        """

        boxes = boxes.to(rel_codes.dtype)

        TO_REMOVE = 1  # TODO remove
        widths = boxes[:, 2] - boxes[:, 0] + TO_REMOVE
        heights = boxes[:, 3] - boxes[:, 1] + TO_REMOVE
        ctr_x = boxes[:, 0] + 0.5 * widths
        ctr_y = boxes[:, 1] + 0.5 * heights

        wx, wy, ww, wh = self.weights
        dx = rel_codes[:, 0::4] / wx
        dy = rel_codes[:, 1::4] / wy
        dw = rel_codes[:, 2::4] / ww
        dh = rel_codes[:, 3::4] / wh

        # Prevent sending too large values into torch.exp()
        dw = torch.clamp(dw, max=self.bbox_xform_clip)
        dh = torch.clamp(dh, max=self.bbox_xform_clip)

        pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
        pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
        pred_w = torch.exp(dw) * widths[:, None]
        pred_h = torch.exp(dh) * heights[:, None]

        pred_boxes = torch.zeros_like(rel_codes)
        # x1
        pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * pred_w
        # y1
        pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * pred_h
        # x2 (note: "- 1" is correct; don't be fooled by the asymmetry)
        pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * pred_w - 1
        # y2 (note: "- 1" is correct; don't be fooled by the asymmetry)
        pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * pred_h - 1

        return pred_boxes