Spaces:
Runtime error
Runtime error
File size: 22,189 Bytes
128757a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""
Implements the Generalized VL R-CNN framework
"""
import torch
from torch import nn
import torch.nn.functional as F
from maskrcnn_benchmark.structures.image_list import to_image_list
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from ..backbone import build_backbone
from ..rpn import build_rpn
from ..roi_heads import build_roi_heads
from ..language_backbone import build_language_backbone
from transformers import AutoTokenizer
import random
import timeit
import pdb
from copy import deepcopy
def random_word(input_ids, mask_token_id, vocabs, padding_token_id, greenlight_map):
"""
greenlight_map, batch_size x 256 (seq_len):
0 means this location cannot be calculated in the MLM loss
-1 means this location cannot be masked!!
1 means this location can be masked and can be calculated in the MLM loss
"""
output_label = deepcopy(input_ids)
for j in range(input_ids.size(0)):
for i in range(input_ids.size(1)):
prob = random.random()
# mask token with probability
ratio = 0.15
if greenlight_map is not None and greenlight_map[j,i] == -1:
output_label[j,i] = -100
continue
if (not input_ids[j,i] == padding_token_id) and prob < ratio:
prob /= ratio
# 80% randomly change token to mask token
if prob < 0.8:
input_ids[j,i] = mask_token_id
# 10% randomly change token to random token
elif prob < 0.9:
input_ids[j,i] = random.choice(vocabs)
else:
# no masking token (will be ignored by loss function later)
output_label[j,i] = -100
if greenlight_map is not None and greenlight_map[j,i] != 1:
output_label[j,i] = -100 # If this location should not be masked
return input_ids, output_label
class GeneralizedVLRCNN(nn.Module):
"""
Main class for Generalized R-CNN. Currently supports boxes and masks.
It consists of three main parts:
- backbone
- rpn
- heads: takes the features + the proposals from the RPN and computes
detections / masks from it.
"""
def __init__(self, cfg):
super(GeneralizedVLRCNN, self).__init__()
self.cfg = cfg
# visual encoder
self.backbone = build_backbone(cfg)
# language encoder
if cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
# self.tokenizer = build_tokenizer("clip")
from transformers import CLIPTokenizerFast
if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
print("Reuse token 'ðŁĴij</w>' (token_id = 49404) for mask token!")
self.tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
from_slow=True, mask_token='ðŁĴij</w>')
else:
self.tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
from_slow=True)
else:
self.tokenizer = AutoTokenizer.from_pretrained(cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE)
self.tokenizer_vocab = self.tokenizer.get_vocab()
self.tokenizer_vocab_ids = [item for key, item in self.tokenizer_vocab.items()]
self.language_backbone = build_language_backbone(cfg)
self.rpn = build_rpn(cfg)
self.roi_heads = build_roi_heads(cfg)
self.DEBUG = cfg.MODEL.DEBUG
self.freeze_backbone = cfg.MODEL.BACKBONE.FREEZE
self.freeze_fpn = cfg.MODEL.FPN.FREEZE
self.freeze_rpn = cfg.MODEL.RPN.FREEZE
self.add_linear_layer = cfg.MODEL.DYHEAD.FUSE_CONFIG.ADD_LINEAR_LAYER
self.force_boxes = cfg.MODEL.RPN.FORCE_BOXES
if cfg.MODEL.LINEAR_PROB:
assert cfg.MODEL.BACKBONE.FREEZE, "For linear probing, backbone should be frozen!"
if hasattr(self.backbone, 'fpn'):
assert cfg.MODEL.FPN.FREEZE, "For linear probing, FPN should be frozen!"
self.linear_prob = cfg.MODEL.LINEAR_PROB
self.freeze_cls_logits = cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS
if cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS:
# disable cls_logits
if hasattr(self.rpn.head, 'cls_logits'):
for p in self.rpn.head.cls_logits.parameters():
p.requires_grad = False
self.freeze_language_backbone = self.cfg.MODEL.LANGUAGE_BACKBONE.FREEZE
if self.cfg.MODEL.LANGUAGE_BACKBONE.FREEZE:
for p in self.language_backbone.parameters():
p.requires_grad = False
self.use_mlm_loss = cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS
self.mlm_loss_for_only_positives = cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS_FOR_ONLY_POSITIVES
if self.cfg.GLIPKNOW.KNOWLEDGE_FILE:
from maskrcnn_benchmark.data.datasets.tsv import load_from_yaml_file
self.class_name_to_knowledge = load_from_yaml_file(self.cfg.GLIPKNOW.KNOWLEDGE_FILE)
self.class_name_list = sorted([k for k in self.class_name_to_knowledge])
def train(self, mode=True):
"""Convert the model into training mode while keep layers freezed."""
super(GeneralizedVLRCNN, self).train(mode)
if self.freeze_backbone:
self.backbone.body.eval()
for p in self.backbone.body.parameters():
p.requires_grad = False
if self.freeze_fpn:
self.backbone.fpn.eval()
for p in self.backbone.fpn.parameters():
p.requires_grad = False
if self.freeze_rpn:
if hasattr(self.rpn, 'head'):
self.rpn.head.eval()
for p in self.rpn.parameters():
p.requires_grad = False
if self.linear_prob:
if self.rpn is not None:
for key, value in self.rpn.named_parameters():
if not ('bbox_pred' in key or 'cls_logits' in key or 'centerness' in key or 'cosine_scale' in key or 'dot_product_projection_text' in key or 'head.log_scale' in key or 'head.bias_lang' in key or 'head.bias0' in key):
value.requires_grad = False
if self.roi_heads is not None:
for key, value in self.roi_heads.named_parameters():
if not ('bbox_pred' in key or 'cls_logits' in key or 'centerness' in key or 'cosine_scale' in key or 'dot_product_projection_text' in key or 'head.log_scale' in key or 'head.bias_lang' in key or 'head.bias0' in key):
value.requires_grad = False
if self.freeze_cls_logits:
if hasattr(self.rpn.head, 'cls_logits'):
self.rpn.head.cls_logits.eval()
for p in self.rpn.head.cls_logits.parameters():
p.requires_grad = False
if self.add_linear_layer:
if self.rpn is not None:
for key, p in self.rpn.named_parameters():
if 'tunable_linear' in key:
p.requires_grad = True
if self.freeze_language_backbone:
self.language_backbone.eval()
for p in self.language_backbone.parameters():
p.requires_grad = False
def forward(self,
images,
targets=None,
captions=None,
positive_map=None,
greenlight_map=None):
"""
Arguments:
images (list[Tensor] or ImageList): images to be processed
targets (list[BoxList]): ground-truth boxes present in the image (optional)
mask_black_list: batch x 256, indicates whether or not a certain token is maskable or not
Returns:
result (list[BoxList] or dict[Tensor]): the output from the model.
During training, it returns a dict[Tensor] which contains the losses.
During testing, it returns list[BoxList] contains additional fields
like `scores`, `labels` and `mask` (for Mask R-CNN models).
"""
if self.training and targets is None:
raise ValueError("In training mode, targets should be passed")
images = to_image_list(images)
# batch_size = images.tensors.shape[0]
device = images.tensors.device
if self.cfg.GLIPKNOW.PARALLEL_LANGUAGE_INPUT:
language_dict_features, positive_map = self._forward_language_parallel(
captions=captions, targets=targets, device=device,
positive_map=positive_map)
else:
# language embedding
language_dict_features = {}
if captions is not None:
#print(captions[0])
tokenized = self.tokenizer.batch_encode_plus(captions,
max_length=self.cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN,
padding='max_length' if self.cfg.MODEL.LANGUAGE_BACKBONE.PAD_MAX else "longest",
return_special_tokens_mask=True,
return_tensors='pt',
truncation=True).to(device)
if self.use_mlm_loss:
if not self.mlm_loss_for_only_positives:
greenlight_map = None
input_ids, mlm_labels = random_word(
input_ids=tokenized.input_ids,
mask_token_id=self.tokenizer.mask_token_id,
vocabs=self.tokenizer_vocab_ids,
padding_token_id=self.tokenizer.pad_token_id,
greenlight_map=greenlight_map)
else:
input_ids = tokenized.input_ids
mlm_labels = None
tokenizer_input = {"input_ids": input_ids,
"attention_mask": tokenized.attention_mask}
if self.cfg.MODEL.LANGUAGE_BACKBONE.FREEZE:
with torch.no_grad():
language_dict_features = self.language_backbone(tokenizer_input)
else:
language_dict_features = self.language_backbone(tokenizer_input)
# ONE HOT
if self.cfg.DATASETS.ONE_HOT:
new_masks = torch.zeros_like(language_dict_features['masks'],
device=language_dict_features['masks'].device)
new_masks[:, :self.cfg.MODEL.DYHEAD.NUM_CLASSES] = 1
language_dict_features['masks'] = new_masks
# MASK ALL SPECIAL TOKENS
if self.cfg.MODEL.LANGUAGE_BACKBONE.MASK_SPECIAL:
language_dict_features["masks"] = 1 - tokenized.special_tokens_mask
language_dict_features["mlm_labels"] = mlm_labels
# visual embedding
swint_feature_c4 = None
if 'vl' in self.cfg.MODEL.SWINT.VERSION:
# the backbone only updates the "hidden" field in language_dict_features
inputs = {"img": images.tensors, "lang": language_dict_features}
visual_features, language_dict_features, swint_feature_c4 = self.backbone(inputs)
else:
visual_features = self.backbone(images.tensors)
# rpn force boxes
if targets:
targets = [target.to(device)
for target in targets if target is not None]
if self.force_boxes:
proposals = []
for t in targets:
tb = t.copy_with_fields(["labels"])
tb.add_field("scores", torch.ones(tb.bbox.shape[0], dtype=torch.bool, device=tb.bbox.device))
proposals.append(tb)
if self.cfg.MODEL.RPN.RETURN_FUSED_FEATURES:
_, proposal_losses, fused_visual_features = self.rpn(
images, visual_features, targets, language_dict_features,
positive_map, captions, swint_feature_c4)
elif self.training:
null_loss = 0
for key, param in self.rpn.named_parameters():
null_loss += 0.0 * param.sum()
proposal_losses = {('rpn_null_loss', null_loss)}
else:
proposals, proposal_losses, fused_visual_features = self.rpn(images, visual_features, targets, language_dict_features, positive_map,
captions, swint_feature_c4)
if self.roi_heads:
if self.cfg.MODEL.ROI_MASK_HEAD.PREDICTOR.startswith("VL"):
if self.training:
# "Only support VL mask head right now!!"
assert len(targets) == 1 and len(targets[0]) == len(positive_map), "shape match assert for mask head!!"
# Not necessary but as a safe guard:
# use the binary 0/1 positive map to replace the normalized positive map
targets[0].add_field("positive_map", positive_map)
# TODO: make sure that this use of language_dict_features is correct!! Its content should be changed in self.rpn
if self.cfg.MODEL.RPN.RETURN_FUSED_FEATURES:
x, result, detector_losses = self.roi_heads(
fused_visual_features, proposals, targets,
language_dict_features=language_dict_features,
positive_map_label_to_token=positive_map if not self.training else None
)
else:
x, result, detector_losses = self.roi_heads(
visual_features, proposals, targets,
language_dict_features=language_dict_features,
positive_map_label_to_token=positive_map if not self.training else None
)
else:
# RPN-only models don't have roi_heads
x = visual_features
result = proposals
detector_losses = {}
if self.training:
losses = {}
losses.update(detector_losses)
losses.update(proposal_losses)
return losses
return result
def _forward_language_parallel(self, captions=None, targets=None,
device=None, positive_map=None):
ktype = self.cfg.GLIPKNOW.KNOWLEDGE_TYPE
def _construct_captions_from_class_names(class_names):
captions = []
for c in class_names:
try:
info = self.class_name_to_knowledge[c]
cap = info['clean_name']
# combine wiki and gpt3 knowledge
if self.cfg.GLIPKNOW.WIKI_AND_GPT3:
ktype = 'def_wiki'
know_seq = info[ktype]
ktype = 'gpt3'
if ktype == 'gpt3' or type(info[ktype]) == list:
know_seq += ' '.join([seq for seq in info[ktype][:self.cfg.GLIPKNOW.GPT3_NUM] ])
cap += ': ' + know_seq
# only one knoweldge source is used
else:
if ktype and ktype in info and info[ktype]:
if ktype == 'gpt3' or type(info[ktype]) == list:
know_seq = ' '.join([seq for seq in info[ktype][:self.cfg.GLIPKNOW.GPT3_NUM] ])
else:
know_seq = info[ktype]
cap += ': ' + know_seq
except:
cap = c
print(f'cap {cap}, c {c}')
captions.append(cap)
return captions
if self.training:
assert captions is None
assert targets is not None
max_classes_per_batch = self.cfg.GLIPKNOW.MAX_NUM_CLASSES_PER_BATCH_TRAIN
if max_classes_per_batch >= len(self.class_name_list):
shuffled_class_names = self.class_name_list.copy()
random.shuffle(shuffled_class_names)
if max_classes_per_batch > len(shuffled_class_names):
shuffled_class_names.extend(shuffled_class_names[:max_classes_per_batch
-len(shuffled_class_names)])
random.shuffle(shuffled_class_names)
else:
label_list = []
label_to_idx = {}
for target_per_im in targets:
labels_per_im = target_per_im.get_field('label_names')
for label in labels_per_im:
if label not in label_to_idx:
label_to_idx[label] = len(label_list)
label_list.append(label)
label_list = label_list[:max_classes_per_batch]
if len(label_list) < max_classes_per_batch:
all_neg_classes = [c for c in self.class_name_list if c not
in label_to_idx]
neg_label_list = random.sample(all_neg_classes,
max_classes_per_batch - len(label_list))
label_list.extend(neg_label_list)
random.shuffle(label_list)
shuffled_class_names = label_list
label_to_shuffled_idx = {l: i for i, l in
enumerate(shuffled_class_names)}
total_boxes = sum(len(t) for t in targets)
positive_map = torch.zeros((total_boxes, max_classes_per_batch+1),
device=device)
offset = 0
for target_per_im in targets:
labels_per_im = target_per_im.get_field('label_names')
for label in labels_per_im:
j = label_to_shuffled_idx.get(label, -1)
if j >= 0:
positive_map[offset, j] = 1
offset += 1
captions = _construct_captions_from_class_names(shuffled_class_names)
captions.append('') # onobj at the end, onedet/modeling/rpn/loss.py:719
batch_size = len(targets)
else:
assert captions is not None
batch_size = 1
assert len(captions) == 1
class_names = captions[0]
max_classes_per_batch = len(class_names)
captions = _construct_captions_from_class_names(class_names)
captions.append('') # onobj at the end, onedet/modeling/rpn/loss.py:719
tokenized = self.tokenizer.batch_encode_plus(captions,
max_length=self.cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN,
padding="longest",
return_special_tokens_mask=True,
return_tensors='pt',
truncation=True).to(device)
assert not self.use_mlm_loss
tokenizer_input = {"input_ids": tokenized.input_ids,
"attention_mask": tokenized.attention_mask}
if self.cfg.MODEL.LANGUAGE_BACKBONE.FREEZE:
with torch.no_grad():
language_dict_features = self.language_backbone(tokenizer_input)
else:
language_dict_features = self.language_backbone(tokenizer_input)
assert not self.cfg.DATASETS.ONE_HOT
assert not self.cfg.MODEL.LANGUAGE_BACKBONE.MASK_SPECIAL
agg_type = self.cfg.GLIPKNOW.LAN_FEATURE_AGG_TYPE
agg_feats = language_dict_features['hidden']
agg_emb = language_dict_features['embedded']
if agg_type == 'first':
agg_feats = agg_feats[:, 0, :]
agg_emb = agg_emb[:, 0, :]
elif agg_type == 'mean':
attn_mask = language_dict_features['masks']
seq_len = attn_mask.sum(-1).unsqueeze(-1).float()
agg_feats = agg_feats * attn_mask.unsqueeze(-1).float()
agg_feats = agg_feats.sum(1) / seq_len
agg_emb = agg_emb * attn_mask.unsqueeze(-1).float()
agg_emb = agg_emb.sum(1) / seq_len
else:
raise ValueError('not supported GLIPKNOW.LAN_FEATURE_AGG_TYPE: {}'.format(agg_type))
expanded_features = agg_feats.unsqueeze(0).repeat(batch_size, 1, 1)
expanded_embedding = agg_emb.unsqueeze(0).repeat(batch_size, 1, 1)
lang_dict = {}
lang_dict["mlm_labels"] = None
lang_dict["aggregate"] = None
lang_dict["embedded"] = expanded_embedding
lang_dict['hidden'] = expanded_features
lang_dict["masks"] = torch.ones((batch_size, max_classes_per_batch+1),
device=device, dtype=language_dict_features['masks'].dtype)
# in GLIP setting, the token at the end of seqence is usually [PAD], and is masked out
# if [noobj] is not masked out, the loss sum is very big, as most
# anchors are matched to [noobj]
lang_dict["masks"][:,-1] = 0
return lang_dict, positive_map
|