File size: 63,696 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""

This file contains specific functions for computing losses on the RPN

file

"""

import torch
from torch import nn
from torch.nn import functional as F

from ..balanced_positive_negative_sampler import BalancedPositiveNegativeSampler
from ..utils import cat, concat_box_prediction_layers

from maskrcnn_benchmark.layers import smooth_l1_loss
from maskrcnn_benchmark.modeling.matcher import Matcher
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from maskrcnn_benchmark.layers import SigmoidFocalLoss, IOULoss, TokenSigmoidFocalLoss
from maskrcnn_benchmark.utils.comm import get_world_size, reduce_sum
from maskrcnn_benchmark.utils.amp import custom_fwd, custom_bwd
from maskrcnn_benchmark.utils.shallow_contrastive_loss_helper import *

from transformers import AutoTokenizer

INF = 1e8


class RPNLossComputation(object):
    """

    This class computes the RPN loss.

    """

    def __init__(self, proposal_matcher, fg_bg_sampler, box_coder):
        """

        Arguments:

            proposal_matcher (Matcher)

            fg_bg_sampler (BalancedPositiveNegativeSampler)

            box_coder (BoxCoder)

        """
        # self.target_preparator = target_preparator
        self.proposal_matcher = proposal_matcher
        self.fg_bg_sampler = fg_bg_sampler
        self.box_coder = box_coder

    def match_targets_to_anchors(self, anchor, target):
        match_quality_matrix = boxlist_iou(target, anchor)
        matched_idxs = self.proposal_matcher(match_quality_matrix)
        # RPN doesn't need any fields from target
        # for creating the labels, so clear them all
        target = target.copy_with_fields([])
        # get the targets corresponding GT for each anchor
        # NB: need to clamp the indices because we can have a single
        # GT in the image, and matched_idxs can be -2, which goes
        # out of bounds

        if len(target):
            matched_targets = target[matched_idxs.clamp(min=0)]
        else:
            matched_targets = target

        matched_targets.add_field("matched_idxs", matched_idxs)
        return matched_targets

    def prepare_targets(self, anchors, targets):
        labels = []
        regression_targets = []
        for anchors_per_image, targets_per_image in zip(anchors, targets):
            matched_targets = self.match_targets_to_anchors(
                anchors_per_image, targets_per_image
            )

            matched_idxs = matched_targets.get_field("matched_idxs")
            labels_per_image = matched_idxs >= 0
            labels_per_image = labels_per_image.to(dtype=torch.float32)
            # discard anchors that go out of the boundaries of the image
            labels_per_image[~anchors_per_image.get_field("visibility")] = -1

            # discard indices that are between thresholds
            inds_to_discard = matched_idxs == Matcher.BETWEEN_THRESHOLDS
            labels_per_image[inds_to_discard] = -1

            # compute regression targets
            if not matched_targets.bbox.shape[0]:
                zeros = torch.zeros_like(labels_per_image)
                regression_targets_per_image = torch.stack((zeros, zeros, zeros, zeros), dim=1)
            else:
                regression_targets_per_image = self.box_coder.encode(matched_targets.bbox, anchors_per_image.bbox)

            labels.append(labels_per_image)
            regression_targets.append(regression_targets_per_image)

        return labels, regression_targets

    @custom_fwd(cast_inputs=torch.float32)
    def __call__(self, anchors, objectness, box_regression, targets):
        """

        Arguments:

            anchors (list[BoxList])

            objectness (list[Tensor])

            box_regression (list[Tensor])

            targets (list[BoxList])



        Returns:

            objectness_loss (Tensor)

            box_loss (Tensor

        """
        anchors = [cat_boxlist(anchors_per_image) for anchors_per_image in anchors]
        labels, regression_targets = self.prepare_targets(anchors, targets)
        sampled_pos_inds, sampled_neg_inds = self.fg_bg_sampler(labels)
        sampled_pos_inds = torch.nonzero(torch.cat(sampled_pos_inds, dim=0)).squeeze(1)
        sampled_neg_inds = torch.nonzero(torch.cat(sampled_neg_inds, dim=0)).squeeze(1)

        sampled_inds = torch.cat([sampled_pos_inds, sampled_neg_inds], dim=0)

        objectness_flattened = []
        box_regression_flattened = []
        # for each feature level, permute the outputs to make them be in the
        # same format as the labels. Note that the labels are computed for
        # all feature levels concatenated, so we keep the same representation
        # for the objectness and the box_regression
        for objectness_per_level, box_regression_per_level in zip(
                objectness, box_regression
        ):
            N, A, H, W = objectness_per_level.shape
            objectness_per_level = objectness_per_level.permute(0, 2, 3, 1).reshape(
                N, -1
            )
            box_regression_per_level = box_regression_per_level.view(N, -1, 4, H, W)
            box_regression_per_level = box_regression_per_level.permute(0, 3, 4, 1, 2)
            box_regression_per_level = box_regression_per_level.reshape(N, -1, 4)
            objectness_flattened.append(objectness_per_level)
            box_regression_flattened.append(box_regression_per_level)
        # concatenate on the first dimension (representing the feature levels), to
        # take into account the way the labels were generated (with all feature maps
        # being concatenated as well)
        objectness = cat(objectness_flattened, dim=1).reshape(-1)
        box_regression = cat(box_regression_flattened, dim=1).reshape(-1, 4)

        labels = torch.cat(labels, dim=0)
        regression_targets = torch.cat(regression_targets, dim=0)

        box_loss = smooth_l1_loss(
            box_regression[sampled_pos_inds],
            regression_targets[sampled_pos_inds],
            beta=1.0 / 9,
            size_average=False,
        ) / (sampled_inds.numel())

        objectness_loss = F.binary_cross_entropy_with_logits(
            objectness[sampled_inds], labels[sampled_inds]
        )

        return objectness_loss, box_loss


class FocalLossComputation(object):
    """

    This class computes the RetinaNet loss.

    """

    def __init__(self, proposal_matcher, box_coder,

                 generate_labels_func,

                 sigmoid_focal_loss,

                 bbox_reg_beta=0.11,

                 regress_norm=1.0):
        """

        Arguments:

            proposal_matcher (Matcher)

            box_coder (BoxCoder)

        """
        self.proposal_matcher = proposal_matcher
        self.box_coder = box_coder
        self.box_cls_loss_func = sigmoid_focal_loss
        self.bbox_reg_beta = bbox_reg_beta
        self.copied_fields = ['labels']
        self.generate_labels_func = generate_labels_func
        self.discard_cases = ['between_thresholds']
        self.regress_norm = regress_norm

    def match_targets_to_anchors(self, anchor, target, copied_fields=[]):
        match_quality_matrix = boxlist_iou(target, anchor)
        matched_idxs = self.proposal_matcher(match_quality_matrix)
        # RPN doesn't need any fields from target
        # for creating the labels, so clear them all
        target = target.copy_with_fields(copied_fields)
        # get the targets corresponding GT for each anchor
        # NB: need to clamp the indices because we can have a single
        # GT in the image, and matched_idxs can be -2, which goes
        # out of bounds
        matched_targets = target[matched_idxs.clamp(min=0)]
        matched_targets.add_field("matched_idxs", matched_idxs)
        return matched_targets

    def prepare_targets(self, anchors, targets):
        labels = []
        regression_targets = []
        for anchors_per_image, targets_per_image in zip(anchors, targets):
            matched_targets = self.match_targets_to_anchors(
                anchors_per_image, targets_per_image, self.copied_fields
            )

            matched_idxs = matched_targets.get_field("matched_idxs")
            labels_per_image = self.generate_labels_func(matched_targets)
            labels_per_image = labels_per_image.to(dtype=torch.float32)

            # Background (negative examples)
            bg_indices = matched_idxs == Matcher.BELOW_LOW_THRESHOLD
            labels_per_image[bg_indices] = 0

            # discard anchors that go out of the boundaries of the image
            if "not_visibility" in self.discard_cases:
                labels_per_image[~anchors_per_image.get_field("visibility")] = -1

            # discard indices that are between thresholds
            if "between_thresholds" in self.discard_cases:
                inds_to_discard = matched_idxs == Matcher.BETWEEN_THRESHOLDS
                labels_per_image[inds_to_discard] = -1

            # compute regression targets
            regression_targets_per_image = self.box_coder.encode(
                matched_targets.bbox, anchors_per_image.bbox
            )

            labels.append(labels_per_image)
            regression_targets.append(regression_targets_per_image)

        return labels, regression_targets

    @custom_fwd(cast_inputs=torch.float32)
    def __call__(self, anchors, box_cls, box_regression, targets):
        """

        Arguments:

            anchors (list[BoxList])

            box_cls (list[Tensor])

            box_regression (list[Tensor])

            targets (list[BoxList])



        Returns:

            retinanet_cls_loss (Tensor)

            retinanet_regression_loss (Tensor

        """
        anchors = [cat_boxlist(anchors_per_image) for anchors_per_image in anchors]
        labels, regression_targets = self.prepare_targets(anchors, targets)

        N = len(labels)
        box_cls, box_regression = \
            concat_box_prediction_layers(box_cls, box_regression)

        labels = torch.cat(labels, dim=0)
        regression_targets = torch.cat(regression_targets, dim=0)
        pos_inds = torch.nonzero(labels > 0).squeeze(1)

        retinanet_regression_loss = smooth_l1_loss(
            box_regression[pos_inds],
            regression_targets[pos_inds],
            beta=self.bbox_reg_beta,
            size_average=False,
        ) / (max(1, pos_inds.numel() * self.regress_norm))

        labels = labels.int()

        retinanet_cls_loss = self.box_cls_loss_func(
            box_cls,
            labels
        ) / (pos_inds.numel() + N)

        return retinanet_cls_loss, retinanet_regression_loss


class FCOSLossComputation(object):
    """

    This class computes the FCOS losses.

    """

    def __init__(self, cfg):
        self.cls_loss_func = SigmoidFocalLoss(
            cfg.MODEL.FOCAL.LOSS_GAMMA,
            cfg.MODEL.FOCAL.LOSS_ALPHA
        )
        self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES
        self.center_sampling_radius = cfg.MODEL.FCOS.CENTER_SAMPLING_RADIUS
        self.iou_loss_type = cfg.MODEL.FCOS.IOU_LOSS_TYPE
        self.norm_reg_targets = cfg.MODEL.FCOS.NORM_REG_TARGETS
        self.use_gt_center = cfg.MODEL.FCOS.USE_GT_CENTER

        # we make use of IOU Loss for bounding boxes regression,
        # but we found that L1 in log scale can yield a similar performance
        self.box_reg_loss_func = IOULoss(self.iou_loss_type)
        self.centerness_loss_func = torch.nn.BCEWithLogitsLoss(reduction="sum")

    def get_sample_region(self, gt, strides, num_points_per, gt_xs, gt_ys, radius=1.0):
        '''

        This code is from

        https://github.com/yqyao/FCOS_PLUS/blob/0d20ba34ccc316650d8c30febb2eb40cb6eaae37/

        maskrcnn_benchmark/modeling/rpn/fcos/loss.py#L42

        '''
        num_gts = gt.shape[0]
        K = len(gt_xs)
        gt = gt[None].expand(K, num_gts, 4)
        center_x = (gt[..., 0] + gt[..., 2]) / 2
        center_y = (gt[..., 1] + gt[..., 3]) / 2
        center_gt = gt.new_zeros(gt.shape)
        # no gt
        if center_x[..., 0].sum() == 0:
            return gt_xs.new_zeros(gt_xs.shape, dtype=torch.uint8)
        beg = 0
        for level, n_p in enumerate(num_points_per):
            end = beg + n_p
            stride = strides[level] * radius
            xmin = center_x[beg:end] - stride
            ymin = center_y[beg:end] - stride
            xmax = center_x[beg:end] + stride
            ymax = center_y[beg:end] + stride
            # limit sample region in gt
            center_gt[beg:end, :, 0] = torch.where(
                xmin > gt[beg:end, :, 0], xmin, gt[beg:end, :, 0]
            )
            center_gt[beg:end, :, 1] = torch.where(
                ymin > gt[beg:end, :, 1], ymin, gt[beg:end, :, 1]
            )
            center_gt[beg:end, :, 2] = torch.where(
                xmax > gt[beg:end, :, 2],
                gt[beg:end, :, 2], xmax
            )
            center_gt[beg:end, :, 3] = torch.where(
                ymax > gt[beg:end, :, 3],
                gt[beg:end, :, 3], ymax
            )
            beg = end
        left = gt_xs[:, None] - center_gt[..., 0]
        right = center_gt[..., 2] - gt_xs[:, None]
        top = gt_ys[:, None] - center_gt[..., 1]
        bottom = center_gt[..., 3] - gt_ys[:, None]
        center_bbox = torch.stack((left, top, right, bottom), -1)
        inside_gt_bbox_mask = center_bbox.min(-1)[0] > 0
        return inside_gt_bbox_mask

    def prepare_targets(self, points, targets):
        object_sizes_of_interest = [
            [-1, 64],
            [64, 128],
            [128, 256],
            [256, 512],
            [512, INF],
        ]
        expanded_object_sizes_of_interest = []
        for l, points_per_level in enumerate(points):
            object_sizes_of_interest_per_level = \
                points_per_level.new_tensor(object_sizes_of_interest[l])
            expanded_object_sizes_of_interest.append(
                object_sizes_of_interest_per_level[None].expand(len(points_per_level), -1)
            )

        expanded_object_sizes_of_interest = torch.cat(expanded_object_sizes_of_interest, dim=0)
        num_points_per_level = [len(points_per_level) for points_per_level in points]
        self.num_points_per_level = num_points_per_level
        points_all_level = torch.cat(points, dim=0)
        labels, reg_targets = self.compute_targets_for_locations(
            points_all_level, targets, expanded_object_sizes_of_interest
        )

        for i in range(len(labels)):
            labels[i] = torch.split(labels[i], num_points_per_level, dim=0)
            reg_targets[i] = torch.split(reg_targets[i], num_points_per_level, dim=0)

        labels_level_first = []
        reg_targets_level_first = []
        for level in range(len(points)):
            labels_level_first.append(
                torch.cat([labels_per_im[level] for labels_per_im in labels], dim=0)
            )

            reg_targets_per_level = torch.cat([
                reg_targets_per_im[level]
                for reg_targets_per_im in reg_targets
            ], dim=0)

            if self.norm_reg_targets:
                reg_targets_per_level = reg_targets_per_level / self.fpn_strides[level]
            reg_targets_level_first.append(reg_targets_per_level)

        return labels_level_first, reg_targets_level_first

    def compute_targets_for_locations(self, locations, targets, object_sizes_of_interest):
        labels = []
        reg_targets = []
        xs, ys = locations[:, 0], locations[:, 1]

        for im_i in range(len(targets)):
            targets_per_im = targets[im_i]
            assert targets_per_im.mode == "xyxy"

            if self.use_gt_center:
                center = targets_per_im.get_field("cbox")
                bboxes = center.bbox
                area = center.area()
            else:
                bboxes = targets_per_im.bbox
                area = targets_per_im.area()
            labels_per_im = targets_per_im.get_field("labels")

            l = xs[:, None] - bboxes[:, 0][None]
            t = ys[:, None] - bboxes[:, 1][None]
            r = bboxes[:, 2][None] - xs[:, None]
            b = bboxes[:, 3][None] - ys[:, None]
            reg_targets_per_im = torch.stack([l, t, r, b], dim=2)

            if self.center_sampling_radius > 0:
                is_in_boxes = self.get_sample_region(
                    bboxes,
                    self.fpn_strides,
                    self.num_points_per_level,
                    xs, ys,
                    radius=self.center_sampling_radius
                )
            else:
                # no center sampling, it will use all the locations within a ground-truth box
                is_in_boxes = reg_targets_per_im.min(dim=2)[0] > 0

            max_reg_targets_per_im = reg_targets_per_im.max(dim=2)[0]
            # limit the regression range for each location
            is_cared_in_the_level = \
                (max_reg_targets_per_im >= object_sizes_of_interest[:, [0]]) & \
                (max_reg_targets_per_im <= object_sizes_of_interest[:, [1]])

            locations_to_gt_area = area[None].repeat(len(locations), 1)
            locations_to_gt_area[is_in_boxes == 0] = INF
            locations_to_gt_area[is_cared_in_the_level == 0] = INF

            # if there are still more than one objects for a location,
            # we choose the one with minimal area
            locations_to_min_area, locations_to_gt_inds = locations_to_gt_area.min(dim=1)

            reg_targets_per_im = reg_targets_per_im[range(len(locations)), locations_to_gt_inds]
            labels_per_im = labels_per_im[locations_to_gt_inds]
            labels_per_im[locations_to_min_area == INF] = 0

            labels.append(labels_per_im)
            reg_targets.append(reg_targets_per_im)

        return labels, reg_targets

    def compute_centerness_targets(self, reg_targets):
        left_right = reg_targets[:, [0, 2]]
        top_bottom = reg_targets[:, [1, 3]]
        centerness = (left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * \
                     (top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0])
        return torch.sqrt(centerness)

    @custom_fwd(cast_inputs=torch.float32)
    def __call__(self, locations, box_cls, box_regression, centerness, targets):
        """

        Arguments:

            locations (list[BoxList])

            box_cls (list[Tensor])

            box_regression (list[Tensor])

            centerness (list[Tensor])

            targets (list[BoxList])



        Returns:

            cls_loss (Tensor)

            reg_loss (Tensor)

            centerness_loss (Tensor)

        """
        N = box_cls[0].size(0)
        num_classes = box_cls[0].size(1)
        labels, reg_targets = self.prepare_targets(locations, targets)

        box_cls_flatten = []
        box_regression_flatten = []
        centerness_flatten = []
        labels_flatten = []
        reg_targets_flatten = []
        for l in range(len(labels)):
            box_cls_flatten.append(box_cls[l].permute(0, 2, 3, 1).reshape(-1, num_classes))
            box_regression_flatten.append(box_regression[l].permute(0, 2, 3, 1).reshape(-1, 4))
            labels_flatten.append(labels[l].reshape(-1))
            reg_targets_flatten.append(reg_targets[l].reshape(-1, 4))
            centerness_flatten.append(centerness[l].reshape(-1))

        box_cls_flatten = torch.cat(box_cls_flatten, dim=0)
        box_regression_flatten = torch.cat(box_regression_flatten, dim=0)
        centerness_flatten = torch.cat(centerness_flatten, dim=0)
        labels_flatten = torch.cat(labels_flatten, dim=0)
        reg_targets_flatten = torch.cat(reg_targets_flatten, dim=0)

        pos_inds = torch.nonzero(labels_flatten > 0).squeeze(1)

        box_regression_flatten = box_regression_flatten[pos_inds]
        reg_targets_flatten = reg_targets_flatten[pos_inds]
        centerness_flatten = centerness_flatten[pos_inds]

        cls_loss = self.cls_loss_func(
            box_cls_flatten,
            labels_flatten.int()
        ) / max(pos_inds.numel(), 1.0)

        if pos_inds.numel() > 0:
            centerness_targets = self.compute_centerness_targets(reg_targets_flatten)

            reg_loss = self.box_reg_loss_func(
                box_regression_flatten,
                reg_targets_flatten,
                centerness_targets
            ) / centerness_targets.sum()
            centerness_loss = self.centerness_loss_func(
                centerness_flatten,
                centerness_targets
            ) / max(pos_inds.numel(), 1.0)
        else:
            reg_loss = box_regression_flatten.sum()
            centerness_loss = centerness_flatten.sum()

        return cls_loss, reg_loss, centerness_loss


# class ATSSLossComputation(object):
class ATSSLossComputation(torch.nn.Module):

    def __init__(self, cfg, box_coder):
        super(ATSSLossComputation, self).__init__()
        
        self.cfg = cfg
        self.cls_loss_func = SigmoidFocalLoss(cfg.MODEL.FOCAL.LOSS_GAMMA, cfg.MODEL.FOCAL.LOSS_ALPHA)
        self.centerness_loss_func = torch.nn.BCEWithLogitsLoss(reduction="sum")
        self.matcher = Matcher(cfg.MODEL.FOCAL.FG_IOU_THRESHOLD, cfg.MODEL.FOCAL.BG_IOU_THRESHOLD, True)
        self.box_coder = box_coder

        if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS or self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS:
            self.token_loss_func = TokenSigmoidFocalLoss(cfg.MODEL.DYHEAD.FUSE_CONFIG.TOKEN_ALPHA,
                                                         cfg.MODEL.DYHEAD.FUSE_CONFIG.TOKEN_GAMMA)

        self.lang = cfg.MODEL.LANGUAGE_BACKBONE.MODEL_TYPE

        # self.tokenizer = AutoTokenizer.from_pretrained(self.lang)
        if self.cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
            from transformers import CLIPTokenizerFast
            # self.tokenizer = build_tokenizer(self.cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE)
            if cfg.MODEL.DYHEAD.FUSE_CONFIG.MLM_LOSS:
                print("Reuse token 'ðŁĴij</w>' (token_id = 49404) for mask token!")
                self.tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
                                                                            from_slow=True, mask_token='ðŁĴij</w>')
            else:
                self.tokenizer = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32",
                                                                            from_slow=True)
        else:
            self.tokenizer = AutoTokenizer.from_pretrained(self.lang)

        # if use shallow contrastive loss
        if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS \
                or self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS:
            if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS:
                assert self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS == False
                channels = cfg.MODEL.DYHEAD.CHANNELS
                num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * cfg.MODEL.RPN.SCALES_PER_OCTAVE
                shallow_input_dim = channels * num_anchors
            elif self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS:
                assert self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS == False
                shallow_input_dim = cfg.MODEL.SWINT.OUT_CHANNELS[-2]

            shallow_log_scale = self.cfg.MODEL.DYHEAD.SHALLOW_LOG_SCALE
            shallow_contrastive_hdim = cfg.MODEL.DYHEAD.FUSE_CONFIG.SHALLOW_CONTRASTIVE_HIDDEN_DIM
            # self.shallow_contrastive_projection_image = nn.Conv2d(channels, num_anchors * shallow_contrastive_hdim,
            #                                                       kernel_size=1)
            self.shallow_contrastive_projection_image = nn.Linear(shallow_input_dim, shallow_contrastive_hdim,
                                                                  bias=True)
            self.shallow_contrastive_projection_text = nn.Linear(self.cfg.MODEL.LANGUAGE_BACKBONE.LANG_DIM,
                                                                 shallow_contrastive_hdim, bias=True)
            self.shallow_log_scale = nn.Parameter(torch.Tensor([shallow_log_scale]), requires_grad=True)

        # (initialization) if use shallow contrastive loss
        if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS:
            for modules in [self.shallow_contrastive_projection_image, self.shallow_contrastive_projection_text]:
                for l in modules.modules():
                    if isinstance(l, nn.Conv2d):
                        torch.nn.init.normal_(l.weight, std=0.01)
                        torch.nn.init.constant_(l.bias, 0)
                    if isinstance(l, nn.Linear):
                        torch.nn.init.xavier_uniform_(l.weight)
                        l.bias.data.fill_(0)

    def NllSoftMaxLoss(self, logits, target):
        loss_ce = -target * logits.log_softmax(
            -1)  # basically, only the those positives with positive target_sim will have losses
        return loss_ce

    def ContrastiveAlignLoss(self, logits, positive_map):
        positive_logits = -logits.masked_fill(~positive_map, 0)
        negative_logits = logits  # .masked_fill(positive_map, -1000000)

        boxes_with_pos = positive_map.any(2)
        pos_term = positive_logits.sum(2)
        neg_term = negative_logits.logsumexp(2)

        nb_pos = positive_map.sum(2) + 1e-6

        box_to_token_loss = ((pos_term / nb_pos + neg_term)).masked_fill(~boxes_with_pos, 0).sum()

        tokens_with_pos = positive_map.any(1)
        pos_term = positive_logits.sum(1)
        neg_term = negative_logits.logsumexp(1)

        nb_pos = positive_map.sum(1) + 1e-6

        tokens_to_boxes_loss = ((pos_term / nb_pos + neg_term)).masked_fill(~tokens_with_pos, 0).sum()
        tot_loss = (box_to_token_loss + tokens_to_boxes_loss) / 2

        return tot_loss

    def GIoULoss(self, pred, target, anchor, weight=None):
        pred_boxes = self.box_coder.decode(pred.view(-1, 4), anchor.view(-1, 4))
        pred_x1 = pred_boxes[:, 0]
        pred_y1 = pred_boxes[:, 1]
        pred_x2 = pred_boxes[:, 2]
        pred_y2 = pred_boxes[:, 3]
        pred_x2 = torch.max(pred_x1, pred_x2)
        pred_y2 = torch.max(pred_y1, pred_y2)
        pred_area = (pred_x2 - pred_x1) * (pred_y2 - pred_y1)

        gt_boxes = self.box_coder.decode(target.view(-1, 4), anchor.view(-1, 4))
        target_x1 = gt_boxes[:, 0]
        target_y1 = gt_boxes[:, 1]
        target_x2 = gt_boxes[:, 2]
        target_y2 = gt_boxes[:, 3]
        target_area = (target_x2 - target_x1) * (target_y2 - target_y1)

        x1_intersect = torch.max(pred_x1, target_x1)
        y1_intersect = torch.max(pred_y1, target_y1)
        x2_intersect = torch.min(pred_x2, target_x2)
        y2_intersect = torch.min(pred_y2, target_y2)
        area_intersect = torch.zeros(pred_x1.size()).to(pred)
        mask = (y2_intersect > y1_intersect) * (x2_intersect > x1_intersect)
        area_intersect[mask] = (x2_intersect[mask] - x1_intersect[mask]) * (y2_intersect[mask] - y1_intersect[mask])

        x1_enclosing = torch.min(pred_x1, target_x1)
        y1_enclosing = torch.min(pred_y1, target_y1)
        x2_enclosing = torch.max(pred_x2, target_x2)
        y2_enclosing = torch.max(pred_y2, target_y2)
        area_enclosing = (x2_enclosing - x1_enclosing) * (y2_enclosing - y1_enclosing) + 1e-7

        area_union = pred_area + target_area - area_intersect + 1e-7
        ious = area_intersect / area_union
        gious = ious - (area_enclosing - area_union) / area_enclosing

        losses = 1 - gious

        if weight is not None and weight.sum() > 0:
            return (losses * weight).sum()
        else:
            assert losses.numel() != 0
            return losses.sum()

    def prepare_targets(self, targets, anchors, tokenized=None, positive_map=None, proj_tokens=None):
        cls_labels = []
        reg_targets = []
        token_labels = []
        map_labels = []

        gold_box_od_labels = []
        od_label_of_tokens_labels = []
        positive_indices = []

        offset = 0

        for im_i in range(len(targets)):
            targets_per_im = targets[im_i]
            assert targets_per_im.mode == "xyxy"
            # bboxes_per_im = targets_per_im.get_field("boxes")
            bboxes_per_im = targets_per_im.bbox
            labels_per_im = targets_per_im.get_field("labels")
            num_gt = len(bboxes_per_im)

            if positive_map is not None:
                token_per_im = positive_map[offset:offset + num_gt, :]
                offset += num_gt

            # Recheck if the label matches with the positive map
            # print(labels_per_im)
            # print(token_per_im.nonzero())

            # shallow contrastive
            if "original_od_label" in targets_per_im.fields():
                gold_box_od_label = targets_per_im.get_field("original_od_label")
            if "positive_map_for_od_labels" in targets_per_im.fields():
                od_label_of_token_per_im = targets_per_im.get_field("positive_map_for_od_labels")

            # print(gold_box_od_label)
            # print(od_label_of_token_per_im)

            if positive_map is not None and proj_tokens is not None:
                if "tokens_positive" in targets_per_im.fields():
                    cur_tokens = targets_per_im.get_field("tokens_positive")
                else:
                    cur_tokens = targets_per_im.get_field("tokens")
                map = torch.zeros((len(cur_tokens), proj_tokens.shape[1]), dtype=torch.bool)
                for j, tok_list in enumerate(cur_tokens):
                    for (beg, end) in tok_list:
                        beg_pos = tokenized.char_to_token(im_i, beg)
                        end_pos = tokenized.char_to_token(im_i, end - 1)
                        if beg_pos is None:
                            try:
                                beg_pos = tokenized.char_to_token(im_i, beg + 1)
                                if beg_pos is None:
                                    beg_pos = tokenized.char_to_token(im_i, beg + 2)
                            except:
                                beg_pos = None
                        if end_pos is None:
                            try:
                                end_pos = tokenized.char_to_token(im_i, end - 2)
                                if end_pos is None:
                                    end_pos = tokenized.char_to_token(im_i, end - 3)
                            except:
                                end_pos = None
                        if beg_pos is None or end_pos is None:
                            continue

                        assert beg_pos is not None and end_pos is not None
                        map[j, beg_pos: end_pos + 1].fill_(True)

            anchors_per_im = cat_boxlist(anchors[im_i])

            num_anchors_per_loc = len(self.cfg.MODEL.RPN.ASPECT_RATIOS) * self.cfg.MODEL.RPN.SCALES_PER_OCTAVE
            num_anchors_per_level = [len(anchors_per_level.bbox) for anchors_per_level in anchors[im_i]]
            ious = boxlist_iou(anchors_per_im, targets_per_im)

            gt_cx = (bboxes_per_im[:, 2] + bboxes_per_im[:, 0]) / 2.0
            gt_cy = (bboxes_per_im[:, 3] + bboxes_per_im[:, 1]) / 2.0
            gt_points = torch.stack((gt_cx, gt_cy), dim=1)

            anchors_cx_per_im = (anchors_per_im.bbox[:, 2] + anchors_per_im.bbox[:, 0]) / 2.0
            anchors_cy_per_im = (anchors_per_im.bbox[:, 3] + anchors_per_im.bbox[:, 1]) / 2.0
            anchor_points = torch.stack((anchors_cx_per_im, anchors_cy_per_im), dim=1)

            distances = (anchor_points[:, None, :] - gt_points[None, :, :]).pow(2).sum(-1).sqrt()

            # Selecting candidates based on the center distance between anchor box and object
            candidate_idxs = []
            star_idx = 0
            for level, anchors_per_level in enumerate(anchors[im_i]):
                end_idx = star_idx + num_anchors_per_level[level]
                distances_per_level = distances[star_idx:end_idx, :]
                topk = min(self.cfg.MODEL.ATSS.TOPK * num_anchors_per_loc, num_anchors_per_level[level])
                _, topk_idxs_per_level = distances_per_level.topk(topk, dim=0, largest=False)
                candidate_idxs.append(topk_idxs_per_level + star_idx)
                star_idx = end_idx
            candidate_idxs = torch.cat(candidate_idxs, dim=0)

            # Using the sum of mean and standard deviation as the IoU threshold to select final positive samples
            candidate_ious = ious[candidate_idxs, torch.arange(num_gt)]
            iou_mean_per_gt = candidate_ious.mean(0)
            iou_std_per_gt = candidate_ious.std(0)
            iou_thresh_per_gt = iou_mean_per_gt + iou_std_per_gt
            is_pos = candidate_ious >= iou_thresh_per_gt[None, :]

            # Limiting the final positive samples’ center to object
            anchor_num = anchors_cx_per_im.shape[0]
            for ng in range(num_gt):
                candidate_idxs[:, ng] += ng * anchor_num
            e_anchors_cx = anchors_cx_per_im.view(1, -1).expand(num_gt, anchor_num).contiguous().view(-1)
            e_anchors_cy = anchors_cy_per_im.view(1, -1).expand(num_gt, anchor_num).contiguous().view(-1)
            candidate_idxs = candidate_idxs.view(-1)
            l = e_anchors_cx[candidate_idxs].view(-1, num_gt) - bboxes_per_im[:, 0]
            t = e_anchors_cy[candidate_idxs].view(-1, num_gt) - bboxes_per_im[:, 1]
            r = bboxes_per_im[:, 2] - e_anchors_cx[candidate_idxs].view(-1, num_gt)
            b = bboxes_per_im[:, 3] - e_anchors_cy[candidate_idxs].view(-1, num_gt)
            is_in_gts = torch.stack([l, t, r, b], dim=1).min(dim=1)[0] > 0.01
            is_pos = is_pos & is_in_gts

            # if an anchor box is assigned to multiple gts, the one with the highest IoU will be selected.
            ious_inf = torch.full_like(ious, -INF).t().contiguous().view(-1)
            index = candidate_idxs.view(-1)[is_pos.view(-1)]
            ious_inf[index] = ious.t().contiguous().view(-1)[index]
            ious_inf = ious_inf.view(num_gt, -1).t()

            anchors_to_gt_values, anchors_to_gt_indexs = ious_inf.max(dim=1)
            # get positive anchors index from ATSS
            positive_index = [i[0].item() for i in torch.nonzero(anchors_to_gt_indexs)]
            cls_labels_per_im = labels_per_im[anchors_to_gt_indexs]
            cls_labels_per_im[anchors_to_gt_values == -INF] = 0

            if positive_map is not None:
                token_labels_per_im = token_per_im[anchors_to_gt_indexs]
                unmatched_labels = torch.zeros(token_labels_per_im.shape[1], device=token_labels_per_im.device)
                # TODO: temporarially disable the [NoObj] token logic, and only restrict to binary loss
                unmatched_labels[-1] = 1  # token: none object - > 256
                token_labels_per_im[anchors_to_gt_values == -INF] = unmatched_labels
                # move from cpu to gpu
                token_labels_per_im = token_labels_per_im.to(cls_labels_per_im.device)

                # print(token_labels_per_im[anchors_to_gt_values == -INF].shape)
                # print(cls_labels_per_im[anchors_to_gt_values != -INF][0])
                # print(token_labels_per_im[anchors_to_gt_values != -INF][0].nonzero())

            if positive_map is not None and proj_tokens is not None:
                map_labels_per_im = map[anchors_to_gt_indexs]
                unmatched_labels = torch.zeros(map_labels_per_im.shape[1], dtype=torch.bool,
                                               device=map_labels_per_im.device)  # map: none False
                map_labels_per_im[anchors_to_gt_values == -INF] = unmatched_labels
                # move from cpu to gpu
                map_labels_per_im = map_labels_per_im.to(cls_labels_per_im.device)

                # print(map_labels_per_im[anchors_to_gt_values == -INF].shape)
                # print(map_labels_per_im[anchors_to_gt_values != -INF][0])

            if positive_map is not None and proj_tokens is not None:
                gold_box_od_label_per_im = gold_box_od_label[anchors_to_gt_indexs]
                gold_box_od_label_per_im[anchors_to_gt_values == -INF] = -100
                # move from cpu to gpu
                gold_box_od_label_per_im = gold_box_od_label_per_im.to(cls_labels_per_im.device)

                # print(gold_box_od_label_per_im[anchors_to_gt_values != -INF])

            matched_gts = bboxes_per_im[anchors_to_gt_indexs]

            reg_targets_per_im = self.box_coder.encode(matched_gts, anchors_per_im.bbox)
            cls_labels.append(cls_labels_per_im)
            reg_targets.append(reg_targets_per_im)

            if positive_map is not None:
                token_labels.append(token_labels_per_im)

            if positive_map is not None and proj_tokens is not None:
                map_labels.append(map_labels_per_im)
                gold_box_od_labels.append(gold_box_od_label_per_im)
                od_label_of_tokens_labels.append(od_label_of_token_per_im)
                positive_indices.append(positive_index)

        # print([len(x) for x in positive_indices])

        return cls_labels, reg_targets, token_labels, map_labels, gold_box_od_labels, od_label_of_tokens_labels, positive_indices

    def compute_centerness_targets(self, reg_targets, anchors):
        gts = self.box_coder.decode(reg_targets, anchors)
        anchors_cx = (anchors[:, 2] + anchors[:, 0]) / 2
        anchors_cy = (anchors[:, 3] + anchors[:, 1]) / 2
        l = anchors_cx - gts[:, 0]
        t = anchors_cy - gts[:, 1]
        r = gts[:, 2] - anchors_cx
        b = gts[:, 3] - anchors_cy
        left_right = torch.stack([l, r], dim=1)
        top_bottom = torch.stack([t, b], dim=1)
        centerness = torch.sqrt((left_right.min(dim=-1)[0] / left_right.max(dim=-1)[0]) * \
                                (top_bottom.min(dim=-1)[0] / top_bottom.max(dim=-1)[0]))
        assert not torch.isnan(centerness).any()
        return centerness

    @custom_fwd(cast_inputs=torch.float32)
    def __call__(self, box_cls, box_regression, centerness, targets, anchors,

                 captions=None,

                 positive_map=None,

                 token_logits=None,

                 proj_tokens=None,

                 contrastive_logits=None,

                 dot_product_logits=None,

                 text_masks=None,

                 shallow_img_emb_feats=None

                 ):

        tokenized = None
        if captions is not None:
            # tokenized = self.tokenizer.batch_encode_plus(captions, padding="longest", return_tensors="pt")
            if self.cfg.MODEL.LANGUAGE_BACKBONE.TOKENIZER_TYPE == "clip":
                tokenized = self.tokenizer.batch_encode_plus(captions,
                                                             max_length=self.cfg.MODEL.LANGUAGE_BACKBONE.MAX_QUERY_LEN,
                                                             padding='max_length' if self.cfg.MODEL.LANGUAGE_BACKBONE.PAD_MAX else "longest",
                                                             return_tensors='pt',
                                                             truncation=True)
            else:
                tokenized = self.tokenizer.batch_encode_plus(captions, padding="longest", return_tensors="pt")

        labels, reg_targets, token_labels, map_labels, gold_box_od_labels, od_label_of_tokens_labels, positive_indices = self.prepare_targets(targets, anchors,
                                                                             tokenized,
                                                                             positive_map,
                                                                             proj_tokens
                                                                             )

        N = len(labels)

        box_regression_flatten, box_cls_flatten, token_logits_stacked = concat_box_prediction_layers(
            box_regression,
            box_cls,
            token_logits,
        )

        # contrastive logits
        if positive_map is not None and contrastive_logits is not None:
            contrastive_logits = torch.cat(contrastive_logits, dim=1)

        # dot product soft token logits
        if dot_product_logits is not None:
            dot_product_logits = torch.cat(dot_product_logits, dim=1)

        centerness_flatten = [ct.permute(0, 2, 3, 1).reshape(N, -1, 1) for ct in centerness]
        centerness_flatten = torch.cat(centerness_flatten, dim=1).reshape(-1)

        labels_flatten = torch.cat(labels, dim=0)
        reg_targets_flatten = torch.cat(reg_targets, dim=0)
        anchors_flatten = torch.cat([cat_boxlist(anchors_per_image).bbox for anchors_per_image in anchors], dim=0)

        if positive_map is not None:
            token_labels_stacked = torch.stack(token_labels, dim=0)

        if positive_map is not None and proj_tokens is not None:
            positive_map_box_to_self_text = None
            shallow_positive_map = None
            bs = proj_tokens.shape[0]
            device = proj_tokens.device

            # NOTE: 0. setup env
            if dist.is_dist_avail_and_initialized():
                world_size = dist.get_world_size()
                rank = torch.distributed.get_rank()
            else:
                world_size = 1
                rank = 0

            if contrastive_logits is not None:
                positive_map_box_to_self_text = torch.stack(map_labels, dim=0)

            if shallow_img_emb_feats is not None:
                '''

                Ultimate:

                    N*B*(max_anchor_num) x N*B*T

                Final Goal:

                    F = B x (max_anchor_num) x N*B*T

                        X: B x (max_anchor_num) od_labels : [0, 20, 30, ..]

                        Y: N*B*T: which denotes the od_label of every token

                    F[i,j] = A[i] == B[j]

                '''
                with torch.no_grad():
                    # NOTE: 1. get X (predicted_box_od_label), which the detection label of every predicted boxes
                    # predicted_box_od_label: B x A

                    # check memory limitation: prevent # of positive >= # of max_positive
                    new_positive_indices = []
                    # print([len(positive_index) for positive_index in positive_indices])
                    for positive_index in positive_indices:
                        if len(positive_index) >= self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SHALLOW_MAX_POSITIVE_ANCHORS:
                            import random
                            positive_index = sorted(random.sample(positive_index,
                                                           self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SHALLOW_MAX_POSITIVE_ANCHORS))
                        new_positive_indices.append(positive_index)
                    # print([len(positive_index) for positive_index in positive_indices])

                    max_len = max([len(positive_index) for positive_index in new_positive_indices])
                    max_anchor_num = max_len

                    if world_size > 1:
                        num_anchors = torch.tensor(max_len, device=positive_map.device)
                        num_anchors_full = [torch.zeros_like(num_anchors) for _ in range(world_size)]
                        torch.distributed.all_gather(num_anchors_full, num_anchors)
                        max_anchor_num = max([anchor.item() for anchor in num_anchors_full])

                    new_negative_pad_indices = []
                    # if not PAD_ZEROS, select random negative paddings
                    if not self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_ZERO_PADS:
                        for (positive_index, old_positive_index) in zip(new_positive_indices, positive_indices):
                            negative_index = [i for i in range(len(cat_boxlist(anchors[0]))) if i not in old_positive_index]
                            import random
                            negative_pad_index = sorted(random.sample(negative_index,
                                                               max_anchor_num - len(positive_index)))
                            new_negative_pad_indices.append(negative_pad_index)

                    predicted_box_od_label = []
                    for i in range(bs):
                        predicted_box_od_label.append(
                            pad_tensor_given_dim_length(gold_box_od_labels[i][new_positive_indices[i]],
                                                        dim=0,
                                                        length=max_anchor_num,
                                                        padding_value=-100,
                                                        batch_first=False
                                                        ))
                    predicted_box_od_label = torch.stack(predicted_box_od_label, dim=0)

                    # if padding, need to create image masks to filter out the paddings
                    image_masks = None
                    if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_ZERO_PADS:
                        image_masks = torch.zeros((bs, max_anchor_num), dtype=torch.long).to(text_masks.device)
                        for i in range(bs):
                            image_masks[i, :len(new_positive_indices[i])] = 1

                    # NOTE: 2. Get Y (od_label_of_tokens)
                    # od_label_of_tokens: N x B x T
                    od_label_of_tokens = torch.stack(od_label_of_tokens_labels, dim=0).long()
                    od_label_of_tokens = gather_tensors(od_label_of_tokens)

                    # NOTE: 3. get F
                    # F: B*A x N*B*T
                    mapping_predicted_box_to_all_text = predicted_box_od_label.view(-1).unsqueeze(
                        1) == od_label_of_tokens.view(-1).unsqueeze(0)

                    # NOTE: 4. we still need to calculate the mapping between predicted box to its corresponding text's mapping
                    # positive_map_box_to_self_text: B x A x T, leave this for vanilla contrastive alignment loss
                    positive_map_box_to_self_text = []
                    for i in range(bs):
                        positive_map_box_to_self_text.append(
                            pad_tensor_given_dim_length(map_labels[i][new_positive_indices[i]],
                                                        dim=0,
                                                        length=max_anchor_num,
                                                        padding_value=False,
                                                        batch_first=False
                                                        ))
                    positive_map_box_to_self_text = torch.stack(positive_map_box_to_self_text, dim=0)

                    # change the corresponding place in our batch
                    for i in range(bs):
                        mapping_predicted_box_to_all_text[i * max_anchor_num: (i + 1) * max_anchor_num,
                        (rank * bs + i) * 256: (rank * bs + i + 1) * 256] = positive_map_box_to_self_text[i]

                    # NOTE: 5. communicate and get positive map
                    # mapping_predicted_box_to_all_text: N*B*A x N*B*T
                    mapping_predicted_box_to_all_text = gather_tensors(mapping_predicted_box_to_all_text).view(-1,
                                                                                                               mapping_predicted_box_to_all_text.size(
                                                                                                                   -1))
                    shallow_positive_map = mapping_predicted_box_to_all_text  # This is the true positive map
                    shallow_positive_map = shallow_positive_map.unsqueeze(0)

                    # Get text attention masks
                    text_attention_mask = torch.zeros((bs, 256), dtype=torch.long)  # B x 256
                    for i in range(bs):
                        text_attention_mask[i, :len(text_masks[i])] = text_masks[i]
                    text_attention_mask = gather_tensors(
                        text_attention_mask.bool().to(device))  # N x B x 256

                    # if PAD_ZEROS, get image masks
                    if image_masks is not None:
                        image_attention_mask = torch.zeros((bs, max_anchor_num), dtype=torch.long)  # B x max_anchor
                        for i in range(bs):
                            image_attention_mask[i, :len(image_masks[i])] = image_masks[i]
                        image_attention_mask = gather_tensors(
                            image_attention_mask.bool().to(device))  # N x B x max_anchor

                # NOTE: 6. calculate shallow contrastive logits
                shallow_proj_tokens = F.normalize(self.shallow_contrastive_projection_text(proj_tokens), p=2, dim=-1)

                shallow_normalized_img_embs = []
                if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS:
                    # choice 1:use features from SWINT backbone layer (c4) before vl fusion
                    from maskrcnn_benchmark.layers.roi_align import ROIAlignV2
                    pooler = ROIAlignV2((1, 1), 1./16, 0)
                    # get positive features
                    for i in range(bs):
                        rois = convert_to_roi_format(cat_boxlist(anchors[i])[new_positive_indices[i]])
                        roi_feature = pooler(shallow_img_emb_feats[i].unsqueeze(0), rois)
                        roi_feature = roi_feature.squeeze(-1).squeeze(-1)
                        shallow_contrastive_proj_queries = self.shallow_contrastive_projection_image(roi_feature)
                        shallow_normalized_img_emb = F.normalize(shallow_contrastive_proj_queries, p=2, dim=-1)
                        if image_masks is not None:
                            # pad zeros
                            shallow_normalized_img_embs.append(
                                pad_tensor_given_dim_length(shallow_normalized_img_emb,
                                                            dim=0,
                                                            length=max_anchor_num,
                                                            padding_value=0.0,
                                                            batch_first=False
                                                            ))
                        else:
                            # pad negatives
                            negative_rois = convert_to_roi_format(cat_boxlist(anchors[i])[new_negative_pad_indices[i]])
                            negative_roi_feature = pooler(shallow_img_emb_feats[i].unsqueeze(0), negative_rois)
                            negative_roi_feature = negative_roi_feature.squeeze(-1).squeeze(-1)
                            negative_shallow_contrastive_proj_queries = self.shallow_contrastive_projection_image(negative_roi_feature)
                            negative_shallow_normalized_img_emb = F.normalize(negative_shallow_contrastive_proj_queries,
                                                                              p=2, dim=-1)
                            shallow_normalized_img_embs.append(
                                pad_random_negative_tensor_given_length(shallow_normalized_img_emb,
                                                                        negative_shallow_normalized_img_emb,
                                                                        length=max_anchor_num
                                                                        )
                            )
                elif self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS:
                    # choice 2:use features after FPN
                    shallow_img_embs = torch.cat(shallow_img_emb_feats, dim=1)
                    # get positive features
                    for i in range(bs):
                        shallow_contrastive_proj_queries = self.shallow_contrastive_projection_image(shallow_img_embs[i, new_positive_indices[i], :])
                        shallow_normalized_img_emb = F.normalize(shallow_contrastive_proj_queries, p=2, dim=-1)
                        if image_masks is not None:
                            # pad zeros
                            shallow_normalized_img_embs.append(
                                pad_tensor_given_dim_length(shallow_normalized_img_emb,
                                                            dim=0,
                                                            length=max_anchor_num,
                                                            padding_value=0.0,
                                                            batch_first=False
                                                            ))
                        else:
                            # pad negatives
                            negative_shallow_contrastive_proj_queries = self.shallow_contrastive_projection_image(shallow_img_embs[i, new_negative_pad_indices[i], :])
                            negative_shallow_normalized_img_emb = F.normalize(negative_shallow_contrastive_proj_queries,
                                                                              p=2, dim=-1)
                            shallow_normalized_img_embs.append(
                                pad_random_negative_tensor_given_length(shallow_normalized_img_emb,
                                                                        negative_shallow_normalized_img_emb,
                                                                        length=max_anchor_num
                                                                        )
                            )

                shallow_normalized_img_embs = torch.stack(shallow_normalized_img_embs, dim=0)
                shallow_normalized_text_emb = shallow_proj_tokens
                shallow_normalized_text_emb = pad_tensor_given_dim_length(shallow_normalized_text_emb,
                                                                          dim=1,
                                                                          length=256,
                                                                          padding_value=0.0)

                gathered_shallow_normalized_img_emb = gather_tensors(shallow_normalized_img_embs)
                gathered_shallow_normalized_text_emb = gather_tensors(shallow_normalized_text_emb)
                gathered_shallow_normalized_img_emb = gathered_shallow_normalized_img_emb.view(-1,
                                                                                               gathered_shallow_normalized_img_emb.size(
                                                                                                   -1))
                gathered_shallow_normalized_text_emb = gathered_shallow_normalized_text_emb.view(-1,
                                                                                                 gathered_shallow_normalized_text_emb.size(
                                                                                                     -1))
                shallow_contrastive_logits = (
                        torch.matmul(gathered_shallow_normalized_img_emb,
                                     gathered_shallow_normalized_text_emb.transpose(-1,
                                                                                    -2)) / self.shallow_log_scale.exp())
                shallow_contrastive_logits = shallow_contrastive_logits.unsqueeze(0)

                # apply text mask
                text_attention_mask = text_attention_mask.view(-1).unsqueeze(0).unsqueeze(0)
                text_attention_mask = text_attention_mask.repeat(1, shallow_contrastive_logits.size(1),
                                                                 1)  # copy along the image feature dimension
                shallow_contrastive_logits = shallow_contrastive_logits.masked_fill(~text_attention_mask, -1000000)

                # if PAD ZEROS, apply image mask
                if image_masks is not None:
                    image_attention_mask = image_attention_mask.view(-1).unsqueeze(0).unsqueeze(-1)
                    image_attention_mask = image_attention_mask.repeat(1, 1, shallow_contrastive_logits.size(
                        2))  # copy along the text feature dimension
                    shallow_contrastive_logits = shallow_contrastive_logits.masked_fill(~image_attention_mask, -1000000)

                # Note: 7. calculate image and text logits and maps
                shallow_image_logits = shallow_contrastive_logits[:,
                                       (rank * bs) * max_anchor_num: (rank * bs + bs) * max_anchor_num, :]
                shallow_image_positive_map = normalized_positive_map(
                    shallow_positive_map[:, (rank * bs) * max_anchor_num: (rank * bs + bs) * max_anchor_num, :])

                shallow_text_logits = shallow_contrastive_logits[:, :,
                                      (rank * bs) * 256: (rank * bs + bs) * 256].transpose(1,
                                                                                           2)
                shallow_text_positive_map = normalized_positive_map(
                    shallow_positive_map[:, :, (rank * bs) * 256: (rank * bs + bs) * 256].transpose(1, 2))

        pos_inds = torch.nonzero(labels_flatten > 0).squeeze(1)

        num_gpus = get_world_size()
        total_num_pos = reduce_sum(pos_inds.new_tensor([pos_inds.numel()])).item()
        num_pos_avg_per_gpu = max(total_num_pos / float(num_gpus), 1.0)

        cls_loss = self.cls_loss_func(box_cls_flatten, labels_flatten.int()) / num_pos_avg_per_gpu

        token_logits_loss = None
        contrastive_align_loss = None
        dot_product_token_loss = None
        shallow_contrastive_loss = None

        if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_TOKEN_LOSS:
            token_logits_loss = self.token_loss_func(token_logits_stacked,
                                                     token_labels_stacked, text_masks=text_masks,
                                                     version="binary") / num_pos_avg_per_gpu

        if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_CONTRASTIVE_ALIGN_LOSS:
            contrastive_align_loss = self.ContrastiveAlignLoss(contrastive_logits, positive_map_box_to_self_text) / num_pos_avg_per_gpu

        if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_DOT_PRODUCT_TOKEN_LOSS:
            dot_product_token_loss = self.token_loss_func(dot_product_logits,
                                                          token_labels_stacked, text_masks=text_masks,
                                                          version="binary") / num_pos_avg_per_gpu

        if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_SHALLOW_CONTRASTIVE_LOSS or \
                self.cfg.MODEL.DYHEAD.FUSE_CONFIG.USE_BACKBONE_SHALLOW_CONTRASTIVE_LOSS:
            box_to_token_loss = self.NllSoftMaxLoss(shallow_image_logits, shallow_image_positive_map).sum()
            token_to_box_loss = self.NllSoftMaxLoss(shallow_text_logits, shallow_text_positive_map).sum()
            tot_loss = (box_to_token_loss + token_to_box_loss) / 2
            shallow_contrastive_loss = tot_loss / num_pos_avg_per_gpu

        box_regression_flatten = box_regression_flatten[pos_inds]
        reg_targets_flatten = reg_targets_flatten[pos_inds]
        anchors_flatten = anchors_flatten[pos_inds]
        centerness_flatten = centerness_flatten[pos_inds]

        if pos_inds.numel() > 0:
            centerness_targets = self.compute_centerness_targets(reg_targets_flatten, anchors_flatten)

            sum_centerness_targets_avg_per_gpu = reduce_sum(centerness_targets.sum()).item() / float(num_gpus)
            reg_loss = self.GIoULoss(box_regression_flatten, reg_targets_flatten, anchors_flatten,
                                     weight=centerness_targets) / sum_centerness_targets_avg_per_gpu
            centerness_loss = self.centerness_loss_func(centerness_flatten, centerness_targets) / num_pos_avg_per_gpu
        else:
            reg_loss = box_regression_flatten.sum()
            reduce_sum(centerness_flatten.new_tensor([0.0]))
            centerness_loss = centerness_flatten.sum()

        return cls_loss, reg_loss * self.cfg.MODEL.ATSS.REG_LOSS_WEIGHT, centerness_loss, \
               token_logits_loss, \
               contrastive_align_loss, \
               dot_product_token_loss, \
               shallow_contrastive_loss


def generate_anchor_labels(matched_targets):
    labels_per_image = matched_targets.get_field("labels")
    return labels_per_image


def make_focal_loss_evaluator(cfg, box_coder):
    matcher = Matcher(
        cfg.MODEL.FOCAL.FG_IOU_THRESHOLD,
        cfg.MODEL.FOCAL.BG_IOU_THRESHOLD,
        allow_low_quality_matches=True,
    )
    sigmoid_focal_loss = SigmoidFocalLoss(
        cfg.MODEL.FOCAL.LOSS_GAMMA,
        cfg.MODEL.FOCAL.LOSS_ALPHA
    )

    loss_evaluator = FocalLossComputation(
        matcher,
        box_coder,
        generate_anchor_labels,
        sigmoid_focal_loss,
        bbox_reg_beta=cfg.MODEL.FOCAL.BBOX_REG_BETA,
        regress_norm=cfg.MODEL.FOCAL.BBOX_REG_WEIGHT,
    )
    return loss_evaluator


def make_rpn_loss_evaluator(cfg, box_coder):
    matcher = Matcher(
        cfg.MODEL.RPN.FG_IOU_THRESHOLD,
        cfg.MODEL.RPN.BG_IOU_THRESHOLD,
        allow_low_quality_matches=True,
    )

    fg_bg_sampler = BalancedPositiveNegativeSampler(
        cfg.MODEL.RPN.BATCH_SIZE_PER_IMAGE, cfg.MODEL.RPN.POSITIVE_FRACTION
    )

    loss_evaluator = RPNLossComputation(matcher, fg_bg_sampler, box_coder)
    return loss_evaluator


def make_fcos_loss_evaluator(cfg):
    loss_evaluator = FCOSLossComputation(cfg)
    return loss_evaluator


def make_atss_loss_evaluator(cfg, box_coder):
    loss_evaluator = ATSSLossComputation(cfg, box_coder)
    return loss_evaluator