File size: 7,532 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import torch
from torch import nn
import torch.nn.functional as F
from torch.autograd import Function
from torch.autograd.function import once_differentiable

from maskrcnn_benchmark import _C


# TODO: Use JIT to replace CUDA implementation in the future.
class _SigmoidFocalLoss(Function):
    @staticmethod
    def forward(ctx, logits, targets, gamma, alpha):
        ctx.save_for_backward(logits, targets)
        num_classes = logits.shape[1]
        ctx.num_classes = num_classes
        ctx.gamma = gamma
        ctx.alpha = alpha

        losses = _C.sigmoid_focalloss_forward(
            logits, targets, num_classes, gamma, alpha
        )
        return losses

    @staticmethod
    @once_differentiable
    def backward(ctx, d_loss):
        logits, targets = ctx.saved_tensors
        num_classes = ctx.num_classes
        gamma = ctx.gamma
        alpha = ctx.alpha
        d_loss = d_loss.contiguous()
        d_logits = _C.sigmoid_focalloss_backward(
            logits, targets, d_loss, num_classes, gamma, alpha
        )
        return d_logits, None, None, None, None


sigmoid_focal_loss_cuda = _SigmoidFocalLoss.apply


def sigmoid_focal_loss_cpu(logits, targets, gamma, alpha):
    num_classes = logits.shape[1]
    dtype = targets.dtype
    device = targets.device
    class_range = torch.arange(1, num_classes + 1, dtype=dtype, device=device).unsqueeze(0)

    t = targets.unsqueeze(1)
    p = torch.sigmoid(logits)
    term1 = (1 - p) ** gamma * torch.log(p)
    term2 = p ** gamma * torch.log(1 - p)
    return -(t == class_range).float() * term1 * alpha - ((t != class_range) * (t >= 0)).float() * term2 * (1 - alpha)


class SigmoidFocalLoss(nn.Module):
    def __init__(self, gamma, alpha):
        super(SigmoidFocalLoss, self).__init__()
        self.gamma = gamma
        self.alpha = alpha

    def forward(self, logits, targets):
        if logits.is_cuda:
            loss_func = sigmoid_focal_loss_cuda
        else:
            loss_func = sigmoid_focal_loss_cpu

        loss = loss_func(logits, targets, self.gamma, self.alpha)
        return loss.sum()

    def __repr__(self):
        tmpstr = self.__class__.__name__ + "("
        tmpstr += "gamma=" + str(self.gamma)
        tmpstr += ", alpha=" + str(self.alpha)
        tmpstr += ")"
        return tmpstr


def token_sigmoid_softmax_focal_loss(pred_logits, targets, alpha, gamma, text_mask=None):
    # Another modification is that because we use the cross entropy version, there is no frequent or not frequent class.
    # So we temporarily retired the design of alpha.

    assert (targets.dim() == 3)
    assert (pred_logits.dim() == 3)  # batch x from x to

    # reprocess target to become probability map ready for softmax
    targets = targets.float()
    target_num = targets.sum(-1) + 1e-8  # numerical stability
    targets = targets / target_num.unsqueeze(-1)  # T(x)

    if text_mask is not None:
        # reserve the last token for non object
        assert (text_mask.dim() == 2)
        text_mask[:, -1] = 1
        text_mask = (text_mask > 0).unsqueeze(1).repeat(1, pred_logits.size(1), 1)  # copy along the image channel
        pred_logits = pred_logits.masked_fill(~text_mask, -1000000)  # softmax

    out_prob = pred_logits.softmax(-1)

    filled_targets = targets.clone()
    filled_targets[filled_targets == 0] = 1.0

    weight = torch.clamp(targets - out_prob, min=0.001) / filled_targets
    weight = torch.pow(weight, gamma)  # weight = torch.pow(torch.clamp(target - out_prob, min=0.01), gamma)

    loss_ce = - targets * weight * pred_logits.log_softmax(
        -1)  # only those positives with positive target_sim will have losses.
    return loss_ce


def token_sigmoid_binary_focal_loss_v2(pred_logits, targets, alpha, gamma, text_mask=None):
    assert (targets.dim() == 3)
    assert (pred_logits.dim() == 3)  # batch x from x to

    if text_mask is not None:
        assert (text_mask.dim() == 2)

    # We convert everything into binary
    out_prob = pred_logits.sigmoid()
    out_prob_neg_pos = torch.stack([1 - out_prob, out_prob], dim=-1) + 1e-8  # batch x boxes x 256 x 2
    weight = torch.pow(-out_prob_neg_pos + 1.0, gamma)

    focal_zero = - weight[:, :, :, 0] * torch.log(out_prob_neg_pos[:, :, :, 0]) * (
            1 - alpha)  # negative class
    focal_one = - weight[:, :, :, 1] * torch.log(out_prob_neg_pos[:, :, :, 1]) * alpha  # positive class
    focal = torch.stack([focal_zero, focal_one], dim=-1)
    loss_ce = torch.gather(focal, index=targets.long().unsqueeze(-1), dim=-1)
    return loss_ce


def token_sigmoid_binary_focal_loss(pred_logits, targets, alpha, gamma, text_mask=None):
    # binary version of focal loss
    # copied from https://github.com/facebookresearch/fvcore/blob/master/fvcore/nn/focal_loss.py
    """

    Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002.

    Args:

        inputs: A float tensor of arbitrary shape.

                The predictions for each example.

        targets: A float tensor with the same shape as inputs. Stores the binary

                 classification label for each element in inputs

                (0 for the negative class and 1 for the positive class).

        alpha: (optional) Weighting factor in range (0,1) to balance

                positive vs negative examples. Default = -1 (no weighting).

        gamma: Exponent of the modulating factor (1 - p_t) to

               balance easy vs hard examples.

    Returns:

        Loss tensor with the reduction option applied.

    """
    assert (targets.dim() == 3)
    assert (pred_logits.dim() == 3)  # batch x from x to

    bs, n, _ = pred_logits.shape
    if text_mask is not None:
        assert (text_mask.dim() == 2)
        text_mask = (text_mask > 0).unsqueeze(1)
        text_mask = text_mask.repeat(1, pred_logits.size(1), 1)  # copy along the image channel dimension
        pred_logits = torch.masked_select(pred_logits, text_mask)
        targets = torch.masked_select(targets, text_mask)

        # print(pred_logits.shape)
        # print(targets.shape)

    p = torch.sigmoid(pred_logits)
    ce_loss = F.binary_cross_entropy_with_logits(pred_logits, targets, reduction="none")
    p_t = p * targets + (1 - p) * (1 - targets)
    loss = ce_loss * ((1 - p_t) ** gamma)

    if alpha >= 0:
        alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
        loss = alpha_t * loss

    return loss


class TokenSigmoidFocalLoss(nn.Module):
    def __init__(self, alpha, gamma):
        super(TokenSigmoidFocalLoss, self).__init__()
        self.alpha = alpha
        self.gamma = gamma

    def forward(self, logits, targets, text_masks=None, version="binary", **kwargs):
        if version == "binary":
            loss_func = token_sigmoid_binary_focal_loss
        elif version == "softmax":
            loss_func = token_sigmoid_softmax_focal_loss
        elif version == "binaryv2":
            loss_func = token_sigmoid_binary_focal_loss_v2
        else:
            raise NotImplementedError
        loss = loss_func(logits, targets, self.alpha, self.gamma, text_masks, **kwargs)
        return loss.sum()

    def __repr__(self):
        tmpstr = self.__class__.__name__ + "("
        tmpstr += "gamma=" + str(self.gamma)
        tmpstr += ", alpha=" + str(self.alpha)
        tmpstr += ")"
        return tmpstr