File size: 27,167 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
import logging
import os
import os.path
import math
from PIL import Image, ImageDraw

import random
import numpy as np

import torch
import torchvision
import torch.utils.data as data
from pycocotools import mask as coco_mask

from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask
from maskrcnn_benchmark.data.datasets.coco import has_valid_annotation
from .od_to_grounding import convert_od_to_grounding_simple, check_for_positive_overflow, sanity_check_target_after_processing, convert_object_detection_to_grounding_optimized_for_od
import pdb
import json

class CocoGrounding(torchvision.datasets.CocoDetection):
    def __init__(self,

                 img_folder,

                 ann_file,

                 transforms,

                 return_masks,

                 return_tokens,

                 is_train=False,

                 tokenizer=None,

                 disable_shuffle=False,

                 add_detection_prompt=False,

                 one_hot=False,

                 disable_clip_to_image=False,

                 no_minus_one_for_one_hot=False,

                 separation_tokens=" ",

                 few_shot=0,

                 no_mask_for_od=False,

                 override_category=None,

                 use_caption_prompt=False,

                 caption_prompt=None,

                 max_query_len=256,

                 special_safeguard_for_coco_grounding=False,

                 random_sample_negative=-1,

                 **kwargs

                 ):
        super(CocoGrounding, self).__init__(img_folder, ann_file)
        self.ids = sorted(self.ids)

        ids = []
        for img_id in self.ids:
            if isinstance(img_id, str):
                ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
            else:
                ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
            anno = self.coco.loadAnns(ann_ids)
            if has_valid_annotation(anno):
                ids.append(img_id)

        self.ids = ids
        
        if few_shot:
            ids = []
            # cats_freq = [few_shot]*len(self.coco.cats.keys())
            cats_freq = [few_shot]*max(list(self.coco.cats.keys()))
            for img_id in self.ids:
                if isinstance(img_id, str):
                    ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
                else:
                    ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
                anno = self.coco.loadAnns(ann_ids)
                cat = set([ann['category_id'] for ann in anno]) #set/tuple corresponde to instance/image level
                is_needed = sum([cats_freq[c-1]>0 for c in cat])
                if is_needed:
                    ids.append(img_id)
                    for c in cat:
                        cats_freq[c-1] -= 1
                    # print(cat, cats_freq)
            self.ids = ids



        self.json_category_id_to_contiguous_id = {
            v: i + 1 for i, v in enumerate(self.coco.getCatIds())
        }
        self.contiguous_category_id_to_json_id = {
            v: k for k, v in self.json_category_id_to_contiguous_id.items()
        }

        if override_category is not None:
            self.coco.dataset["categories"] = override_category
        self.use_caption_prompt = use_caption_prompt
        self.caption_prompt = caption_prompt
        self.special_safeguard_for_coco_grounding = special_safeguard_for_coco_grounding
        self.random_sample_negative = random_sample_negative
        self.ind_to_class = self.categories(no_background=False)
        self.id_to_img_map = {k: v for k, v in enumerate(self.ids)}
        self._transforms = transforms
        self.max_query_len = max_query_len
        self.prepare = ConvertCocoPolysToMask(False, return_tokens, tokenizer=tokenizer, max_query_len=max_query_len)
        self.tokenizer = tokenizer
        self.is_train = is_train

        self.ind_to_class = self.categories(no_background=False)

        self.disable_shuffle = disable_shuffle
        self.add_detection_prompt = add_detection_prompt
        self.one_hot = one_hot
        self.no_minus_one_for_one_hot = no_minus_one_for_one_hot

        self.disable_clip_to_image = disable_clip_to_image
        self.separation_tokens = separation_tokens
        self.no_mask_for_od = no_mask_for_od
        self.return_masks = return_masks

    def categories(self, no_background=True):
        categories = self.coco.dataset["categories"]
        label_list = {}
        for index, i in enumerate(categories):
            # assert(index + 1 == i["id"])
            if not no_background or (i["name"] != "__background__" and i['id'] != 0):
                label_list[self.json_category_id_to_contiguous_id[i["id"]]] = i["name"]
        return label_list

    def get_box_mask(self, rect, img_size, mode="poly"):
        assert mode=="poly", "Only support poly mask right now!"
        x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3]
        return [[x1, y1, x1, y2, x2, y2, x2, y1]]

    def __getitem__(self, idx):
        img, tgt = super(CocoGrounding, self).__getitem__(idx)
        image_id = self.ids[idx]
        tgt = [obj for obj in tgt if obj["iscrowd"] == 0]
        boxes = [obj["bbox"] for obj in tgt]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)  # guard against no boxes
        target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")
        classes = [obj["category_id"] for obj in tgt]
        classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
        classes = torch.tensor(classes)
        target.add_field("labels", classes)

        if self.return_masks:
            masks = []
            is_box_mask = []
            for obj, bbox in zip(tgt, target.bbox):
                if "segmentation" in obj:
                    masks.append(obj["segmentation"])
                    is_box_mask.append(0)
                else:
                    masks.append(self.get_box_mask(bbox, img.size, mode="poly"))
                    is_box_mask.append(1)
            masks = SegmentationMask(masks, img.size, mode="poly")
            is_box_mask = torch.tensor(is_box_mask)
            target.add_field("masks", masks)
            target.add_field("is_box_mask", is_box_mask)
        
        if not self.disable_clip_to_image:
            target = target.clip_to_image(remove_empty=True)
        
        if self.special_safeguard_for_coco_grounding:
            # Intended for LVIS
            assert(not self.use_caption_prompt)

            original_box_num = len(target)
            target, positive_caption_length = check_for_positive_overflow(target, self.ind_to_class, self.tokenizer, self.max_query_len-2) # leave some space for the special tokens
            if len(target) < original_box_num:
                print("WARNING: removed {} boxes due to positive caption overflow".format(original_box_num - len(target)))

            annotations, caption, greenlight_span_for_masked_lm_objective, label_to_positions = convert_object_detection_to_grounding_optimized_for_od(
                target=target,
                image_id=image_id,
                ind_to_class=self.ind_to_class,
                disable_shuffle=self.disable_shuffle,
                add_detection_prompt=False,
                add_detection_prompt_advanced=False,
                random_sample_negative=self.random_sample_negative,
                control_probabilities=(0.0, 0.0, 1.0, 0.0), # always try to add a lot of negatives
                restricted_negative_list=None,
                separation_tokens=self.separation_tokens,
                max_num_labels=-1,
                positive_caption_length=positive_caption_length,
                tokenizer=self.tokenizer,
                max_seq_length=self.max_query_len-2
            )
        else:
            # Intended for COCO / ODinW
            annotations, caption, greenlight_span_for_masked_lm_objective = convert_od_to_grounding_simple(
                target=target,
                image_id=image_id,
                ind_to_class=self.ind_to_class,
                disable_shuffle=self.disable_shuffle,
                add_detection_prompt=self.add_detection_prompt,
                separation_tokens=self.separation_tokens,
                caption_prompt=self.caption_prompt if self.use_caption_prompt else None,
            )

        anno = {"image_id": image_id, "annotations": annotations, "caption": caption}
        anno["greenlight_span_for_masked_lm_objective"] = greenlight_span_for_masked_lm_objective
        if self.no_mask_for_od:
            anno["greenlight_span_for_masked_lm_objective"].append((-1, -1, -1))
        img, anno = self.prepare(img, anno, box_format="xyxy")

        # for equivalence check
        if self.one_hot:
            logging.info("using one hot for equivalence check.")
            one_hot_map = torch.zeros_like(anno["positive_map"], dtype=torch.float)
            text_mask = torch.zeros(anno["positive_map"].shape[1], dtype=torch.int64)
            # create one hot mapping
            for ii, cls in enumerate(classes):
                if self.no_minus_one_for_one_hot:
                    one_hot_map[ii, cls] = 1.0
                else:
                    one_hot_map[ii, cls - 1] = 1.0
            if self.no_minus_one_for_one_hot:
                text_mask[:] = 1
            else:
                text_mask[:len(self.ind_to_class)] = 1
            anno["positive_map"] = one_hot_map
            anno["text_mask"] = text_mask

        if self._transforms is not None:
            img, target = self._transforms(img, target)

        # add additional property
        for ann in anno:
            target.add_field(ann, anno[ann])
        
        sanity_check_target_after_processing(target)

        return img, target, idx

    def get_img_info(self, index):
        img_id = self.id_to_img_map[index]
        img_data = self.coco.imgs[img_id]
        return img_data


class ModulatedDataset(torchvision.datasets.CocoDetection):
    def __init__(self,

                 img_folder,

                 ann_file,

                 transforms,

                 return_masks,

                 return_tokens,

                 is_train=False,

                 tokenizer=None,

                 disable_clip_to_image=False,

                 no_mask_for_gold=False,

                 max_query_len=256,

                 **kwargs):
        super(ModulatedDataset, self).__init__(img_folder, ann_file)
        self.ids = sorted(self.ids)

        ids = []
        for img_id in self.ids:
            if isinstance(img_id, str):
                ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
            else:
                ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
            anno = self.coco.loadAnns(ann_ids)
            if has_valid_annotation(anno):
                ids.append(img_id)
        self.ids = ids

        self.id_to_img_map = {k: v for k, v in enumerate(self.ids)}
        self._transforms = transforms
        self.max_query_len = max_query_len
        self.prepare = ConvertCocoPolysToMask(return_masks, return_tokens, tokenizer=tokenizer, max_query_len=max_query_len)
        self.is_train = is_train
        self.disable_clip_to_image = disable_clip_to_image
        self.no_mask_for_gold = no_mask_for_gold

    def __getitem__(self, idx):
        img, target = super(ModulatedDataset, self).__getitem__(idx)
        image_id = self.ids[idx]
        coco_img = self.coco.loadImgs(image_id)[0]
        caption = coco_img["caption"]
        dataset_name = coco_img["dataset_name"] if "dataset_name" in coco_img else None
        anno = {"image_id": image_id, "annotations": target, "caption": caption}

        # This dataset is used for Flickr & Mixed, so the sequence is maskable
        anno["greenlight_span_for_masked_lm_objective"] = [(0, len(caption))]
        if self.no_mask_for_gold:
            anno["greenlight_span_for_masked_lm_objective"].append((-1, -1, -1))
        img, anno = self.prepare(img, anno)

        # convert to BoxList (bboxes, labels)
        boxes = torch.as_tensor(anno["boxes"]).reshape(-1, 4)  # guard against no boxes
        target = BoxList(boxes, img.size, mode="xyxy")
        classes = anno["labels"]
        target.add_field("labels", classes)
        if self.prepare.return_masks:
            target.add_field("masks", anno.pop("masks"))
            target.add_field("is_box_mask", anno.pop("is_box_mask"))
        if not self.disable_clip_to_image:
            num_boxes = len(target.bbox)
            target = target.clip_to_image(remove_empty=True)
            assert num_boxes == len(target.bbox), "Box got removed in MixedDataset!!!"

        # Check if bboxes are correct
        # draw = ImageDraw.Draw(img)
        # boxes = target.bbox
        # for box in boxes:
        #     draw.rectangle([box[0], box[1], box[2], box[3]])
        # img.save('OUTPUT/images/{}.jpg'.format(idx))

        if self._transforms is not None:
            img, target = self._transforms(img, target)

        # add additional property
        for ann in anno:
            target.add_field(ann, anno[ann])

        target.add_field("dataset_name", dataset_name)
        for extra_key in ["sentence_id", "original_img_id", "original_id", "task_id"]:
            if extra_key in coco_img:
                target.add_field(extra_key, coco_img[extra_key])

        if "tokens_positive_eval" in coco_img and not self.is_train:
            tokenized = self.prepare.tokenizer(caption, return_tensors="pt")
            target.add_field("positive_map_eval", create_positive_map(tokenized, coco_img["tokens_positive_eval"]))
            target.add_field("nb_eval", len(target.get_field("positive_map_eval")))

        sanity_check_target_after_processing(target)
        return img, target, idx

    def get_img_info(self, index):
        img_id = self.id_to_img_map[index]
        img_data = self.coco.imgs[img_id]
        return img_data


class CocoDetection(data.Dataset):
    """`MS Coco Detection <http://mscoco.org/dataset/#detections-challenge2016>`_ Dataset.



    Args:

        root (string): Root directory where images are downloaded to.

        annFile (string): Path to json annotation file.

        transform (callable, optional): A function/transform that  takes in an PIL image

            and returns a transformed version. E.g, ``transforms.ToTensor``

        target_transform (callable, optional): A function/transform that takes in the

            target and transforms it.

    """

    def __init__(self, root, annFile, transform=None, target_transform=None):
        from pycocotools.coco import COCO
        self.root = root
        self.coco = COCO(annFile)
        self.ids = list(self.coco.imgs.keys())
        self.transform = transform
        self.target_transform = target_transform

    def __getitem__(self, index, return_meta=False):
        """

        Args:

            index (int): Index



        Returns:

            tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``.

        """
        coco = self.coco
        img_id = self.ids[index]
        if isinstance(img_id, str):
            img_id = [img_id]
        ann_ids = coco.getAnnIds(imgIds=img_id)
        target = coco.loadAnns(ann_ids)

        meta = coco.loadImgs(img_id)[0]
        path = meta['file_name']
        img = pil_loader(os.path.join(self.root, path))

        if self.transform is not None:
            img = self.transform(img)

        if self.target_transform is not None:
            target = self.target_transform(target)

        if return_meta:
            return img, target, meta
        else:
            return img, target

    def __len__(self):
        return len(self.ids)

    def __repr__(self):
        fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
        fmt_str += '    Number of datapoints: {}\n'.format(self.__len__())
        fmt_str += '    Root Location: {}\n'.format(self.root)
        tmp = '    Transforms (if any): '
        fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        tmp = '    Target Transforms (if any): '
        fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
        return fmt_str


class ConvertCocoPolysToMask(object):
    def __init__(self, return_masks=False, return_tokens=False, tokenizer=None, max_query_len=256):
        self.return_masks = return_masks
        self.return_tokens = return_tokens
        self.tokenizer = tokenizer
        self.max_query_len = max_query_len

    def get_box_mask(self, rect, img_size, mode="poly"):
        assert mode=="poly", "Only support poly mask right now!"
        x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3]
        return [[x1, y1, x1, y2, x2, y2, x2, y1]]

    def __call__(self, image, target, ignore_box_screen=False, box_format="xywh"):
        w, h = image.size

        image_id = target["image_id"]
        image_id = torch.tensor([image_id])

        anno = target["annotations"]
        caption = target["caption"] if "caption" in target else None
        label_to_positions = target.get("label_to_positions", {})

        greenlight_span_for_masked_lm_objective = target.get("greenlight_span_for_masked_lm_objective", None)

        anno = [obj for obj in anno if "iscrowd" not in obj or obj["iscrowd"] == 0]

        boxes = [obj["bbox"] for obj in anno]
        # guard against no boxes via resizing
        boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
        if box_format == "xywh":
            boxes[:, 2:] += boxes[:, :2] - 1  # TO_REMOVE = 1
            boxes[:, 0::2].clamp_(min=0, max=w-1)  # TO_REMOVE = 1
            boxes[:, 1::2].clamp_(min=0, max=h-1)  # TO_REMOVE = 1

        classes = [obj["category_id"] for obj in anno]
        classes = torch.tensor(classes, dtype=torch.int64)

        if self.return_masks:
            masks = []
            is_box_mask = []
            for obj, bbox in zip(anno, boxes):
                if "segmentation" in obj:
                    masks.append(obj["segmentation"])
                    is_box_mask.append(0)
                else:
                    masks.append(self.get_box_mask(bbox, image.size, mode='poly'))
                    is_box_mask.append(1)
            masks = SegmentationMask(masks, image.size, mode='poly')
            is_box_mask = torch.tensor(is_box_mask)

        keypoints = None
        if anno and "keypoints" in anno[0]:
            keypoints = [obj["keypoints"] for obj in anno]
            keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
            num_keypoints = keypoints.shape[0]
            if num_keypoints:
                keypoints = keypoints.view(num_keypoints, -1, 3)

        isfinal = None
        if anno and "isfinal" in anno[0]:
            isfinal = torch.as_tensor([obj["isfinal"] for obj in anno], dtype=torch.float)

        tokens_positive = [] if self.return_tokens else None
        if self.return_tokens and anno and "tokens" in anno[0]:
            tokens_positive = [obj["tokens"] for obj in anno]
        elif self.return_tokens and anno and "tokens_positive" in anno[0]:
            tokens_positive = [obj["tokens_positive"] for obj in anno]

        keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
        boxes = boxes[keep]
        classes = classes[keep]
        if self.return_masks:
            masks = masks[keep]
            is_box_mask = is_box_mask[keep]
        if keypoints is not None:
            keypoints = keypoints[keep]

        target = {}
        target["boxes"] = boxes
        target["labels"] = classes
        if caption is not None:
            target["caption"] = caption
        if self.return_masks:
            target["masks"] = masks
            target["is_box_mask"] = is_box_mask
        target["image_id"] = image_id
        if keypoints is not None:
            target["keypoints"] = keypoints

        if tokens_positive is not None:
            target["tokens_positive"] = []

            for i, k in enumerate(keep):
                if k or ignore_box_screen:
                    target["tokens_positive"].append(tokens_positive[i])

        if isfinal is not None:
            target["isfinal"] = isfinal

        # for conversion to coco api
        area = torch.tensor([obj["area"] for obj in anno])
        iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno])
        target["area"] = area[keep]
        target["iscrowd"] = iscrowd[keep]

        target["orig_size"] = torch.as_tensor([int(h), int(w)])
        target["size"] = torch.as_tensor([int(h), int(w)])

        if self.return_tokens and self.tokenizer is not None:
            if not ignore_box_screen:
                assert len(target["boxes"]) == len(target["tokens_positive"])
            tokenized = self.tokenizer(caption, return_tensors="pt",
                max_length=self.max_query_len,
                truncation=True)
            target["positive_map"] = create_positive_map(tokenized, target["tokens_positive"])
            target['greenlight_map'] = create_greenlight_map(greenlight_span_for_masked_lm_objective,tokenized)
            target["positive_map_for_od_labels"] = create_positive_map_for_od_labels(tokenized, label_to_positions)

        original_od_label = []
        for obj in anno:
            original_od_label.append(
                obj.get("original_od_label", -10))  # NOTE: The padding value has to be not the same as -1 or -100
        target["original_od_label"] = torch.as_tensor(original_od_label)

        return image, target

def create_greenlight_map(tok_list, tokenized):
    # An example tok_list:
    # [(0, 5), (10, 13), (-1, -1, -1)]
    # The last one is a special indicator..

    greenlight_map = torch.zeros(256, dtype=torch.float)
    for item in tok_list:
        if len(item) != 2:
            assert(len(item) == 3)
            # Make everything unmakable
            greenlight_map[:] = -1
            break

        beg, end = item
        beg_pos = tokenized.char_to_token(beg)
        end_pos = tokenized.char_to_token(end - 1)
        if beg_pos is None:
            try:
                beg_pos = tokenized.char_to_token(beg + 1)
                if beg_pos is None:
                    beg_pos = tokenized.char_to_token(beg + 2)
            except:
                beg_pos = None
        if end_pos is None:
            try:
                end_pos = tokenized.char_to_token(end - 2)
                if end_pos is None:
                    end_pos = tokenized.char_to_token(end - 3)
            except:
                end_pos = None
        if beg_pos is None or end_pos is None:
            continue

        assert beg_pos is not None and end_pos is not None
        greenlight_map[beg_pos: end_pos + 1].fill_(1)
    return greenlight_map


def create_positive_map_for_od_labels(tokenized, label_to_positions):
    """construct a map such that positive_map[i] = j, where j is the object detection label of the token i"""
    """

    {3: [1: 5)}

    256 : -1 3 3 3 3 -1 .. 8 8 ..

    the woman in the garden

    -1 -1 -1 -1 -1

    """
    positive_map = torch.ones(256, dtype=torch.float) * -1  # -1 means no match
    keys = list(label_to_positions.keys())
    for j, key in enumerate(keys):
        tok_list = label_to_positions[key]
        # one label only mapps to one location
        beg, end = tok_list
        beg_pos = tokenized.char_to_token(beg)
        end_pos = tokenized.char_to_token(end - 1)
        if beg_pos is None:
            try:
                beg_pos = tokenized.char_to_token(beg + 1)
                if beg_pos is None:
                    beg_pos = tokenized.char_to_token(beg + 2)
            except:
                beg_pos = None
        if end_pos is None:
            try:
                end_pos = tokenized.char_to_token(end - 2)
                if end_pos is None:
                    end_pos = tokenized.char_to_token(end - 3)
            except:
                end_pos = None
        if beg_pos is None or end_pos is None:
            continue
        assert beg_pos is not None and end_pos is not None
        positive_map[beg_pos: end_pos + 1].fill_(key)
    return positive_map


def convert_coco_poly_to_mask(segmentations, height, width):
    masks = []
    for polygons in segmentations:
        rles = coco_mask.frPyObjects(polygons, height, width)
        mask = coco_mask.decode(rles)
        if len(mask.shape) < 3:
            mask = mask[..., None]
        mask = torch.as_tensor(mask, dtype=torch.uint8)
        mask = mask.any(dim=2)
        masks.append(mask)
    if masks:
        masks = torch.stack(masks, dim=0)
    else:
        masks = torch.zeros((0, height, width), dtype=torch.uint8)
    return masks


def create_positive_map(tokenized, tokens_positive):
    """construct a map such that positive_map[i,j] = True iff box i is associated to token j"""
    positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float)

    for j, tok_list in enumerate(tokens_positive):
        for (beg, end) in tok_list:
            beg_pos = tokenized.char_to_token(beg)
            end_pos = tokenized.char_to_token(end - 1)
            if beg_pos is None:
                try:
                    beg_pos = tokenized.char_to_token(beg + 1)
                    if beg_pos is None:
                        beg_pos = tokenized.char_to_token(beg + 2)
                except:
                    beg_pos = None
            if end_pos is None:
                try:
                    end_pos = tokenized.char_to_token(end - 2)
                    if end_pos is None:
                        end_pos = tokenized.char_to_token(end - 3)
                except:
                    end_pos = None
            if beg_pos is None or end_pos is None:
                continue

            assert beg_pos is not None and end_pos is not None
            positive_map[j, beg_pos: end_pos + 1].fill_(1)
    return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)


def pil_loader(path, retry=5):
    # open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
    ri = 0
    while ri < retry:
        try:
            with open(path, 'rb') as f:
                img = Image.open(f)
                return img.convert('RGB')
        except:
            ri += 1