Spaces:
Runtime error
Runtime error
File size: 27,167 Bytes
128757a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
import logging
import os
import os.path
import math
from PIL import Image, ImageDraw
import random
import numpy as np
import torch
import torchvision
import torch.utils.data as data
from pycocotools import mask as coco_mask
from maskrcnn_benchmark.structures.bounding_box import BoxList
from maskrcnn_benchmark.structures.segmentation_mask import SegmentationMask
from maskrcnn_benchmark.data.datasets.coco import has_valid_annotation
from .od_to_grounding import convert_od_to_grounding_simple, check_for_positive_overflow, sanity_check_target_after_processing, convert_object_detection_to_grounding_optimized_for_od
import pdb
import json
class CocoGrounding(torchvision.datasets.CocoDetection):
def __init__(self,
img_folder,
ann_file,
transforms,
return_masks,
return_tokens,
is_train=False,
tokenizer=None,
disable_shuffle=False,
add_detection_prompt=False,
one_hot=False,
disable_clip_to_image=False,
no_minus_one_for_one_hot=False,
separation_tokens=" ",
few_shot=0,
no_mask_for_od=False,
override_category=None,
use_caption_prompt=False,
caption_prompt=None,
max_query_len=256,
special_safeguard_for_coco_grounding=False,
random_sample_negative=-1,
**kwargs
):
super(CocoGrounding, self).__init__(img_folder, ann_file)
self.ids = sorted(self.ids)
ids = []
for img_id in self.ids:
if isinstance(img_id, str):
ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
else:
ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
anno = self.coco.loadAnns(ann_ids)
if has_valid_annotation(anno):
ids.append(img_id)
self.ids = ids
if few_shot:
ids = []
# cats_freq = [few_shot]*len(self.coco.cats.keys())
cats_freq = [few_shot]*max(list(self.coco.cats.keys()))
for img_id in self.ids:
if isinstance(img_id, str):
ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
else:
ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
anno = self.coco.loadAnns(ann_ids)
cat = set([ann['category_id'] for ann in anno]) #set/tuple corresponde to instance/image level
is_needed = sum([cats_freq[c-1]>0 for c in cat])
if is_needed:
ids.append(img_id)
for c in cat:
cats_freq[c-1] -= 1
# print(cat, cats_freq)
self.ids = ids
self.json_category_id_to_contiguous_id = {
v: i + 1 for i, v in enumerate(self.coco.getCatIds())
}
self.contiguous_category_id_to_json_id = {
v: k for k, v in self.json_category_id_to_contiguous_id.items()
}
if override_category is not None:
self.coco.dataset["categories"] = override_category
self.use_caption_prompt = use_caption_prompt
self.caption_prompt = caption_prompt
self.special_safeguard_for_coco_grounding = special_safeguard_for_coco_grounding
self.random_sample_negative = random_sample_negative
self.ind_to_class = self.categories(no_background=False)
self.id_to_img_map = {k: v for k, v in enumerate(self.ids)}
self._transforms = transforms
self.max_query_len = max_query_len
self.prepare = ConvertCocoPolysToMask(False, return_tokens, tokenizer=tokenizer, max_query_len=max_query_len)
self.tokenizer = tokenizer
self.is_train = is_train
self.ind_to_class = self.categories(no_background=False)
self.disable_shuffle = disable_shuffle
self.add_detection_prompt = add_detection_prompt
self.one_hot = one_hot
self.no_minus_one_for_one_hot = no_minus_one_for_one_hot
self.disable_clip_to_image = disable_clip_to_image
self.separation_tokens = separation_tokens
self.no_mask_for_od = no_mask_for_od
self.return_masks = return_masks
def categories(self, no_background=True):
categories = self.coco.dataset["categories"]
label_list = {}
for index, i in enumerate(categories):
# assert(index + 1 == i["id"])
if not no_background or (i["name"] != "__background__" and i['id'] != 0):
label_list[self.json_category_id_to_contiguous_id[i["id"]]] = i["name"]
return label_list
def get_box_mask(self, rect, img_size, mode="poly"):
assert mode=="poly", "Only support poly mask right now!"
x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3]
return [[x1, y1, x1, y2, x2, y2, x2, y1]]
def __getitem__(self, idx):
img, tgt = super(CocoGrounding, self).__getitem__(idx)
image_id = self.ids[idx]
tgt = [obj for obj in tgt if obj["iscrowd"] == 0]
boxes = [obj["bbox"] for obj in tgt]
boxes = torch.as_tensor(boxes).reshape(-1, 4) # guard against no boxes
target = BoxList(boxes, img.size, mode="xywh").convert("xyxy")
classes = [obj["category_id"] for obj in tgt]
classes = [self.json_category_id_to_contiguous_id[c] for c in classes]
classes = torch.tensor(classes)
target.add_field("labels", classes)
if self.return_masks:
masks = []
is_box_mask = []
for obj, bbox in zip(tgt, target.bbox):
if "segmentation" in obj:
masks.append(obj["segmentation"])
is_box_mask.append(0)
else:
masks.append(self.get_box_mask(bbox, img.size, mode="poly"))
is_box_mask.append(1)
masks = SegmentationMask(masks, img.size, mode="poly")
is_box_mask = torch.tensor(is_box_mask)
target.add_field("masks", masks)
target.add_field("is_box_mask", is_box_mask)
if not self.disable_clip_to_image:
target = target.clip_to_image(remove_empty=True)
if self.special_safeguard_for_coco_grounding:
# Intended for LVIS
assert(not self.use_caption_prompt)
original_box_num = len(target)
target, positive_caption_length = check_for_positive_overflow(target, self.ind_to_class, self.tokenizer, self.max_query_len-2) # leave some space for the special tokens
if len(target) < original_box_num:
print("WARNING: removed {} boxes due to positive caption overflow".format(original_box_num - len(target)))
annotations, caption, greenlight_span_for_masked_lm_objective, label_to_positions = convert_object_detection_to_grounding_optimized_for_od(
target=target,
image_id=image_id,
ind_to_class=self.ind_to_class,
disable_shuffle=self.disable_shuffle,
add_detection_prompt=False,
add_detection_prompt_advanced=False,
random_sample_negative=self.random_sample_negative,
control_probabilities=(0.0, 0.0, 1.0, 0.0), # always try to add a lot of negatives
restricted_negative_list=None,
separation_tokens=self.separation_tokens,
max_num_labels=-1,
positive_caption_length=positive_caption_length,
tokenizer=self.tokenizer,
max_seq_length=self.max_query_len-2
)
else:
# Intended for COCO / ODinW
annotations, caption, greenlight_span_for_masked_lm_objective = convert_od_to_grounding_simple(
target=target,
image_id=image_id,
ind_to_class=self.ind_to_class,
disable_shuffle=self.disable_shuffle,
add_detection_prompt=self.add_detection_prompt,
separation_tokens=self.separation_tokens,
caption_prompt=self.caption_prompt if self.use_caption_prompt else None,
)
anno = {"image_id": image_id, "annotations": annotations, "caption": caption}
anno["greenlight_span_for_masked_lm_objective"] = greenlight_span_for_masked_lm_objective
if self.no_mask_for_od:
anno["greenlight_span_for_masked_lm_objective"].append((-1, -1, -1))
img, anno = self.prepare(img, anno, box_format="xyxy")
# for equivalence check
if self.one_hot:
logging.info("using one hot for equivalence check.")
one_hot_map = torch.zeros_like(anno["positive_map"], dtype=torch.float)
text_mask = torch.zeros(anno["positive_map"].shape[1], dtype=torch.int64)
# create one hot mapping
for ii, cls in enumerate(classes):
if self.no_minus_one_for_one_hot:
one_hot_map[ii, cls] = 1.0
else:
one_hot_map[ii, cls - 1] = 1.0
if self.no_minus_one_for_one_hot:
text_mask[:] = 1
else:
text_mask[:len(self.ind_to_class)] = 1
anno["positive_map"] = one_hot_map
anno["text_mask"] = text_mask
if self._transforms is not None:
img, target = self._transforms(img, target)
# add additional property
for ann in anno:
target.add_field(ann, anno[ann])
sanity_check_target_after_processing(target)
return img, target, idx
def get_img_info(self, index):
img_id = self.id_to_img_map[index]
img_data = self.coco.imgs[img_id]
return img_data
class ModulatedDataset(torchvision.datasets.CocoDetection):
def __init__(self,
img_folder,
ann_file,
transforms,
return_masks,
return_tokens,
is_train=False,
tokenizer=None,
disable_clip_to_image=False,
no_mask_for_gold=False,
max_query_len=256,
**kwargs):
super(ModulatedDataset, self).__init__(img_folder, ann_file)
self.ids = sorted(self.ids)
ids = []
for img_id in self.ids:
if isinstance(img_id, str):
ann_ids = self.coco.getAnnIds(imgIds=[img_id], iscrowd=None)
else:
ann_ids = self.coco.getAnnIds(imgIds=img_id, iscrowd=None)
anno = self.coco.loadAnns(ann_ids)
if has_valid_annotation(anno):
ids.append(img_id)
self.ids = ids
self.id_to_img_map = {k: v for k, v in enumerate(self.ids)}
self._transforms = transforms
self.max_query_len = max_query_len
self.prepare = ConvertCocoPolysToMask(return_masks, return_tokens, tokenizer=tokenizer, max_query_len=max_query_len)
self.is_train = is_train
self.disable_clip_to_image = disable_clip_to_image
self.no_mask_for_gold = no_mask_for_gold
def __getitem__(self, idx):
img, target = super(ModulatedDataset, self).__getitem__(idx)
image_id = self.ids[idx]
coco_img = self.coco.loadImgs(image_id)[0]
caption = coco_img["caption"]
dataset_name = coco_img["dataset_name"] if "dataset_name" in coco_img else None
anno = {"image_id": image_id, "annotations": target, "caption": caption}
# This dataset is used for Flickr & Mixed, so the sequence is maskable
anno["greenlight_span_for_masked_lm_objective"] = [(0, len(caption))]
if self.no_mask_for_gold:
anno["greenlight_span_for_masked_lm_objective"].append((-1, -1, -1))
img, anno = self.prepare(img, anno)
# convert to BoxList (bboxes, labels)
boxes = torch.as_tensor(anno["boxes"]).reshape(-1, 4) # guard against no boxes
target = BoxList(boxes, img.size, mode="xyxy")
classes = anno["labels"]
target.add_field("labels", classes)
if self.prepare.return_masks:
target.add_field("masks", anno.pop("masks"))
target.add_field("is_box_mask", anno.pop("is_box_mask"))
if not self.disable_clip_to_image:
num_boxes = len(target.bbox)
target = target.clip_to_image(remove_empty=True)
assert num_boxes == len(target.bbox), "Box got removed in MixedDataset!!!"
# Check if bboxes are correct
# draw = ImageDraw.Draw(img)
# boxes = target.bbox
# for box in boxes:
# draw.rectangle([box[0], box[1], box[2], box[3]])
# img.save('OUTPUT/images/{}.jpg'.format(idx))
if self._transforms is not None:
img, target = self._transforms(img, target)
# add additional property
for ann in anno:
target.add_field(ann, anno[ann])
target.add_field("dataset_name", dataset_name)
for extra_key in ["sentence_id", "original_img_id", "original_id", "task_id"]:
if extra_key in coco_img:
target.add_field(extra_key, coco_img[extra_key])
if "tokens_positive_eval" in coco_img and not self.is_train:
tokenized = self.prepare.tokenizer(caption, return_tensors="pt")
target.add_field("positive_map_eval", create_positive_map(tokenized, coco_img["tokens_positive_eval"]))
target.add_field("nb_eval", len(target.get_field("positive_map_eval")))
sanity_check_target_after_processing(target)
return img, target, idx
def get_img_info(self, index):
img_id = self.id_to_img_map[index]
img_data = self.coco.imgs[img_id]
return img_data
class CocoDetection(data.Dataset):
"""`MS Coco Detection <http://mscoco.org/dataset/#detections-challenge2016>`_ Dataset.
Args:
root (string): Root directory where images are downloaded to.
annFile (string): Path to json annotation file.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.ToTensor``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
"""
def __init__(self, root, annFile, transform=None, target_transform=None):
from pycocotools.coco import COCO
self.root = root
self.coco = COCO(annFile)
self.ids = list(self.coco.imgs.keys())
self.transform = transform
self.target_transform = target_transform
def __getitem__(self, index, return_meta=False):
"""
Args:
index (int): Index
Returns:
tuple: Tuple (image, target). target is the object returned by ``coco.loadAnns``.
"""
coco = self.coco
img_id = self.ids[index]
if isinstance(img_id, str):
img_id = [img_id]
ann_ids = coco.getAnnIds(imgIds=img_id)
target = coco.loadAnns(ann_ids)
meta = coco.loadImgs(img_id)[0]
path = meta['file_name']
img = pil_loader(os.path.join(self.root, path))
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
if return_meta:
return img, target, meta
else:
return img, target
def __len__(self):
return len(self.ids)
def __repr__(self):
fmt_str = 'Dataset ' + self.__class__.__name__ + '\n'
fmt_str += ' Number of datapoints: {}\n'.format(self.__len__())
fmt_str += ' Root Location: {}\n'.format(self.root)
tmp = ' Transforms (if any): '
fmt_str += '{0}{1}\n'.format(tmp, self.transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
tmp = ' Target Transforms (if any): '
fmt_str += '{0}{1}'.format(tmp, self.target_transform.__repr__().replace('\n', '\n' + ' ' * len(tmp)))
return fmt_str
class ConvertCocoPolysToMask(object):
def __init__(self, return_masks=False, return_tokens=False, tokenizer=None, max_query_len=256):
self.return_masks = return_masks
self.return_tokens = return_tokens
self.tokenizer = tokenizer
self.max_query_len = max_query_len
def get_box_mask(self, rect, img_size, mode="poly"):
assert mode=="poly", "Only support poly mask right now!"
x1, y1, x2, y2 = rect[0], rect[1], rect[2], rect[3]
return [[x1, y1, x1, y2, x2, y2, x2, y1]]
def __call__(self, image, target, ignore_box_screen=False, box_format="xywh"):
w, h = image.size
image_id = target["image_id"]
image_id = torch.tensor([image_id])
anno = target["annotations"]
caption = target["caption"] if "caption" in target else None
label_to_positions = target.get("label_to_positions", {})
greenlight_span_for_masked_lm_objective = target.get("greenlight_span_for_masked_lm_objective", None)
anno = [obj for obj in anno if "iscrowd" not in obj or obj["iscrowd"] == 0]
boxes = [obj["bbox"] for obj in anno]
# guard against no boxes via resizing
boxes = torch.as_tensor(boxes, dtype=torch.float32).reshape(-1, 4)
if box_format == "xywh":
boxes[:, 2:] += boxes[:, :2] - 1 # TO_REMOVE = 1
boxes[:, 0::2].clamp_(min=0, max=w-1) # TO_REMOVE = 1
boxes[:, 1::2].clamp_(min=0, max=h-1) # TO_REMOVE = 1
classes = [obj["category_id"] for obj in anno]
classes = torch.tensor(classes, dtype=torch.int64)
if self.return_masks:
masks = []
is_box_mask = []
for obj, bbox in zip(anno, boxes):
if "segmentation" in obj:
masks.append(obj["segmentation"])
is_box_mask.append(0)
else:
masks.append(self.get_box_mask(bbox, image.size, mode='poly'))
is_box_mask.append(1)
masks = SegmentationMask(masks, image.size, mode='poly')
is_box_mask = torch.tensor(is_box_mask)
keypoints = None
if anno and "keypoints" in anno[0]:
keypoints = [obj["keypoints"] for obj in anno]
keypoints = torch.as_tensor(keypoints, dtype=torch.float32)
num_keypoints = keypoints.shape[0]
if num_keypoints:
keypoints = keypoints.view(num_keypoints, -1, 3)
isfinal = None
if anno and "isfinal" in anno[0]:
isfinal = torch.as_tensor([obj["isfinal"] for obj in anno], dtype=torch.float)
tokens_positive = [] if self.return_tokens else None
if self.return_tokens and anno and "tokens" in anno[0]:
tokens_positive = [obj["tokens"] for obj in anno]
elif self.return_tokens and anno and "tokens_positive" in anno[0]:
tokens_positive = [obj["tokens_positive"] for obj in anno]
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
boxes = boxes[keep]
classes = classes[keep]
if self.return_masks:
masks = masks[keep]
is_box_mask = is_box_mask[keep]
if keypoints is not None:
keypoints = keypoints[keep]
target = {}
target["boxes"] = boxes
target["labels"] = classes
if caption is not None:
target["caption"] = caption
if self.return_masks:
target["masks"] = masks
target["is_box_mask"] = is_box_mask
target["image_id"] = image_id
if keypoints is not None:
target["keypoints"] = keypoints
if tokens_positive is not None:
target["tokens_positive"] = []
for i, k in enumerate(keep):
if k or ignore_box_screen:
target["tokens_positive"].append(tokens_positive[i])
if isfinal is not None:
target["isfinal"] = isfinal
# for conversion to coco api
area = torch.tensor([obj["area"] for obj in anno])
iscrowd = torch.tensor([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno])
target["area"] = area[keep]
target["iscrowd"] = iscrowd[keep]
target["orig_size"] = torch.as_tensor([int(h), int(w)])
target["size"] = torch.as_tensor([int(h), int(w)])
if self.return_tokens and self.tokenizer is not None:
if not ignore_box_screen:
assert len(target["boxes"]) == len(target["tokens_positive"])
tokenized = self.tokenizer(caption, return_tensors="pt",
max_length=self.max_query_len,
truncation=True)
target["positive_map"] = create_positive_map(tokenized, target["tokens_positive"])
target['greenlight_map'] = create_greenlight_map(greenlight_span_for_masked_lm_objective,tokenized)
target["positive_map_for_od_labels"] = create_positive_map_for_od_labels(tokenized, label_to_positions)
original_od_label = []
for obj in anno:
original_od_label.append(
obj.get("original_od_label", -10)) # NOTE: The padding value has to be not the same as -1 or -100
target["original_od_label"] = torch.as_tensor(original_od_label)
return image, target
def create_greenlight_map(tok_list, tokenized):
# An example tok_list:
# [(0, 5), (10, 13), (-1, -1, -1)]
# The last one is a special indicator..
greenlight_map = torch.zeros(256, dtype=torch.float)
for item in tok_list:
if len(item) != 2:
assert(len(item) == 3)
# Make everything unmakable
greenlight_map[:] = -1
break
beg, end = item
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
greenlight_map[beg_pos: end_pos + 1].fill_(1)
return greenlight_map
def create_positive_map_for_od_labels(tokenized, label_to_positions):
"""construct a map such that positive_map[i] = j, where j is the object detection label of the token i"""
"""
{3: [1: 5)}
256 : -1 3 3 3 3 -1 .. 8 8 ..
the woman in the garden
-1 -1 -1 -1 -1
"""
positive_map = torch.ones(256, dtype=torch.float) * -1 # -1 means no match
keys = list(label_to_positions.keys())
for j, key in enumerate(keys):
tok_list = label_to_positions[key]
# one label only mapps to one location
beg, end = tok_list
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
positive_map[beg_pos: end_pos + 1].fill_(key)
return positive_map
def convert_coco_poly_to_mask(segmentations, height, width):
masks = []
for polygons in segmentations:
rles = coco_mask.frPyObjects(polygons, height, width)
mask = coco_mask.decode(rles)
if len(mask.shape) < 3:
mask = mask[..., None]
mask = torch.as_tensor(mask, dtype=torch.uint8)
mask = mask.any(dim=2)
masks.append(mask)
if masks:
masks = torch.stack(masks, dim=0)
else:
masks = torch.zeros((0, height, width), dtype=torch.uint8)
return masks
def create_positive_map(tokenized, tokens_positive):
"""construct a map such that positive_map[i,j] = True iff box i is associated to token j"""
positive_map = torch.zeros((len(tokens_positive), 256), dtype=torch.float)
for j, tok_list in enumerate(tokens_positive):
for (beg, end) in tok_list:
beg_pos = tokenized.char_to_token(beg)
end_pos = tokenized.char_to_token(end - 1)
if beg_pos is None:
try:
beg_pos = tokenized.char_to_token(beg + 1)
if beg_pos is None:
beg_pos = tokenized.char_to_token(beg + 2)
except:
beg_pos = None
if end_pos is None:
try:
end_pos = tokenized.char_to_token(end - 2)
if end_pos is None:
end_pos = tokenized.char_to_token(end - 3)
except:
end_pos = None
if beg_pos is None or end_pos is None:
continue
assert beg_pos is not None and end_pos is not None
positive_map[j, beg_pos: end_pos + 1].fill_(1)
return positive_map / (positive_map.sum(-1)[:, None] + 1e-6)
def pil_loader(path, retry=5):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
ri = 0
while ri < retry:
try:
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
except:
ri += 1
|