Spaces:
Runtime error
Runtime error
File size: 14,395 Bytes
128757a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import cv2
import random
import numpy as np
import math
import torch
import torchvision
from torchvision.transforms import functional as F
from maskrcnn_benchmark.structures.bounding_box import BoxList
def matrix_iou(a, b, relative=False):
"""
return iou of a and b, numpy version for data augenmentation
"""
lt = np.maximum(a[:, np.newaxis, :2], b[:, :2])
rb = np.minimum(a[:, np.newaxis, 2:], b[:, 2:])
area_i = np.prod(rb - lt, axis=2) * (lt < rb).all(axis=2)
area_a = np.prod(a[:, 2:] - a[:, :2], axis=1)
area_b = np.prod(b[:, 2:] - b[:, :2], axis=1)
if relative:
ious = area_i / (area_b[:, np.newaxis]+1e-12)
else:
ious = area_i / (area_a[:, np.newaxis] + area_b - area_i+1e-12)
return ious
class RACompose(object):
def __init__(self, pre_transforms, rand_transforms, post_transforms, concurrent=2):
self.preprocess = pre_transforms
self.transforms = post_transforms
self.rand_transforms = rand_transforms
self.concurrent = concurrent
def __call__(self, image, target):
for t in self.preprocess:
image, target = t(image, target)
for t in random.choices(self.rand_transforms, k=self.concurrent):
image = np.array(image)
image, target = t(image, target)
for t in self.transforms:
image, target = t(image, target)
return image, target
def __repr__(self):
format_string = self.__class__.__name__ + "("
for t in self.preprocess:
format_string += "\n"
format_string += " {0}".format(t)
format_string += "\nRandom select {0} from: (".format(self.concurrent)
for t in self.rand_transforms:
format_string += "\n"
format_string += " {0}".format(t)
format_string += ")\nThen, apply:"
for t in self.transforms:
format_string += "\n"
format_string += " {0}".format(t)
format_string += "\n)"
return format_string
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, image, target=None):
for t in self.transforms:
image, target = t(image, target)
if target is None:
return image
return image, target
def __repr__(self):
format_string = self.__class__.__name__ + "("
for t in self.transforms:
format_string += "\n"
format_string += " {0}".format(t)
format_string += "\n)"
return format_string
class Resize(object):
def __init__(self, min_size, max_size, restrict=False):
if not isinstance(min_size, (list, tuple)):
min_size = (min_size,)
self.min_size = min_size
self.max_size = max_size
self.restrict = restrict
# modified from torchvision to add support for max size
def get_size(self, image_size):
w, h = image_size
size = random.choice(self.min_size)
max_size = self.max_size
if self.restrict:
return (size, max_size)
if max_size is not None:
min_original_size = float(min((w, h)))
max_original_size = float(max((w, h)))
if max_original_size / min_original_size * size > max_size:
size = int(round(max_size * min_original_size / max_original_size))
if (w <= h and w == size) or (h <= w and h == size):
return (h, w)
if w < h:
ow = size
oh = int(size * h / w)
else:
oh = size
ow = int(size * w / h)
return (oh, ow)
def __call__(self, image, target):
if isinstance(image, np.ndarray):
image_size = self.get_size(image.shape[:2])
image = cv2.resize(image, image_size)
new_size = image_size
else:
image = F.resize(image, self.get_size(image.size))
new_size = image.size
if target is not None:
target = target.resize(new_size)
return image, target
class RandomHorizontalFlip(object):
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, image, target):
if random.random() < self.prob:
if isinstance(image, np.ndarray):
image = np.fliplr(image)
else:
image = F.hflip(image)
if target is not None:
target = target.transpose(0)
return image, target
class RandomVerticalFlip(object):
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, image, target):
if random.random() < self.prob:
if isinstance(image, np.ndarray):
image = np.flipud(image)
else:
image = F.vflip(image)
target = target.transpose(1)
return image, target
class ToTensor(object):
def __call__(self, image, target):
return F.to_tensor(image), target
class Normalize(object):
def __init__(self, mean, std, format='rgb'):
self.mean = mean
self.std = std
self.format = format.lower()
def __call__(self, image, target):
if 'bgr' in self.format:
image = image[[2, 1, 0]]
if '255' in self.format:
image = image * 255
image = F.normalize(image, mean=self.mean, std=self.std)
return image, target
class ColorJitter(object):
def __init__(self,
brightness=0.0,
contrast=0.0,
saturation=0.0,
hue=0.0,
):
self.color_jitter = torchvision.transforms.ColorJitter(
brightness=brightness,
contrast=contrast,
saturation=saturation,
hue=hue,)
def __call__(self, image, target):
image = self.color_jitter(image)
return image, target
class RandomCrop(object):
def __init__(self, prob=0.5, min_ious=(0.1, 0.3, 0.5, 0.7, 0.9), min_crop_size=0.3):
# 1: return ori img
self.prob = prob
self.sample_mode = (1, *min_ious, 0)
self.min_crop_size = min_crop_size
def __call__(self, img, target):
if random.random() > self.prob:
return img, target
h, w, c = img.shape
boxes = target.bbox.numpy()
labels = target.get_field('labels')
while True:
mode = random.choice(self.sample_mode)
if mode == 1:
return img, target
min_iou = mode
new_w = random.uniform(self.min_crop_size * w, w)
new_h = random.uniform(self.min_crop_size * h, h)
# h / w in [0.5, 2]
if new_h / new_w < 0.5 or new_h / new_w > 2:
continue
left = random.uniform(0, w - new_w)
top = random.uniform(0, h - new_h)
patch = np.array([left, top, left + new_w, top + new_h])
overlaps = matrix_iou(patch.reshape(-1, 4), boxes.reshape(-1, 4)).reshape(-1)
if overlaps.min() < min_iou:
continue
# center of boxes should inside the crop img
center = (boxes[:, :2] + boxes[:, 2:]) / 2
mask = (center[:, 0] > patch[0]) * (center[:, 1] > patch[1]) * (center[:, 0] < patch[2]) * ( center[:, 1] < patch[3])
if not mask.any():
continue
boxes = boxes[mask]
labels = labels[mask]
# adjust boxes
img = img[int(patch[1]):int(patch[3]), int(patch[0]):int(patch[2])]
boxes[:, 2:] = boxes[:, 2:].clip(max=patch[2:])
boxes[:, :2] = boxes[:, :2].clip(min=patch[:2])
boxes -= np.tile(patch[:2], 2)
new_target = BoxList(boxes, (img.shape[1], img.shape[0]), mode='xyxy')
new_target.add_field('labels', labels)
return img, new_target
class RandomAffine(object):
def __init__(self, prob=0.5, degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-2, 2),
borderValue=(127.5, 127.5, 127.5)):
self.prob = prob
self.degrees = degrees
self.translate = translate
self.scale = scale
self.shear = shear
self.borderValue = borderValue
def __call__(self, img, targets=None):
if random.random() > self.prob:
return img, targets
# torchvision.transforms.RandomAffine(degrees=(-10, 10), translate=(.1, .1), scale=(.9, 1.1), shear=(-10, 10))
# https://medium.com/uruvideo/dataset-augmentation-with-random-homographies-a8f4b44830d4
border = 0 # width of added border (optional)
#height = max(img.shape[0], img.shape[1]) + border * 2
height, width, _ = img.shape
bbox = targets.bbox
# Rotation and Scale
R = np.eye(3)
a = random.random() * (self.degrees[1] - self.degrees[0]) + self.degrees[0]
# a += random.choice([-180, -90, 0, 90]) # 90deg rotations added to small rotations
s = random.random() * (self.scale[1] - self.scale[0]) + self.scale[0]
R[:2] = cv2.getRotationMatrix2D(angle=a, center=(img.shape[1] / 2, img.shape[0] / 2), scale=s)
# Translation
T = np.eye(3)
T[0, 2] = (random.random() * 2 - 1) * self.translate[0] * img.shape[0] + border # x translation (pixels)
T[1, 2] = (random.random() * 2 - 1) * self.translate[1] * img.shape[1] + border # y translation (pixels)
# Shear
S = np.eye(3)
S[0, 1] = math.tan((random.random() * (self.shear[1] - self.shear[0]) + self.shear[0]) * math.pi / 180) # x shear (deg)
S[1, 0] = math.tan((random.random() * (self.shear[1] - self.shear[0]) + self.shear[0]) * math.pi / 180) # y shear (deg)
M = S @ T @ R # Combined rotation matrix. ORDER IS IMPORTANT HERE!!
imw = cv2.warpPerspective(img, M, dsize=(width, height), flags=cv2.INTER_LINEAR,
borderValue=self.borderValue) # BGR order borderValue
# Return warped points also
if targets:
n = bbox.shape[0]
points = bbox[:, 0:4]
area0 = (points[:, 2] - points[:, 0]) * (points[:, 3] - points[:, 1])
# warp points
xy = np.ones((n * 4, 3))
xy[:, :2] = points[:, [0, 1, 2, 3, 0, 3, 2, 1]].reshape(n * 4, 2) # x1y1, x2y2, x1y2, x2y1
xy = (xy @ M.T)[:, :2].reshape(n, 8)
# create new boxes
x = xy[:, [0, 2, 4, 6]]
y = xy[:, [1, 3, 5, 7]]
xy = np.concatenate((x.min(1), y.min(1), x.max(1), y.max(1))).reshape(4, n).T
# apply angle-based reduction
radians = a * math.pi / 180
reduction = max(abs(math.sin(radians)), abs(math.cos(radians))) ** 0.5
x = (xy[:, 2] + xy[:, 0]) / 2
y = (xy[:, 3] + xy[:, 1]) / 2
w = (xy[:, 2] - xy[:, 0]) * reduction
h = (xy[:, 3] - xy[:, 1]) * reduction
xy = np.concatenate((x - w / 2, y - h / 2, x + w / 2, y + h / 2)).reshape(4, n).T
# reject warped points outside of image
x1 = np.clip(xy[:,0], 0, width)
y1 = np.clip(xy[:,1], 0, height)
x2 = np.clip(xy[:,2], 0, width)
y2 = np.clip(xy[:,3], 0, height)
new_bbox = np.concatenate((x1, y1, x2, y2)).reshape(4, n).T
targets.bbox = torch.as_tensor(new_bbox, dtype=torch.float32)
return imw, targets
class RandomErasing:
def __init__(self, prob=0.5, era_l=0.02, era_h=1/3, min_aspect=0.3,
mode='const', max_count=1, max_overlap=0.3, max_value=255):
self.prob = prob
self.era_l = era_l
self.era_h = era_h
self.min_aspect = min_aspect
self.min_count = 1
self.max_count = max_count
self.max_overlap = max_overlap
self.max_value = max_value
self.mode = mode.lower()
assert self.mode in ['const', 'rand', 'pixel'], 'invalid erase mode: %s' % self.mode
def _get_pixels(self, patch_size):
if self.mode == 'pixel':
return np.random.random(patch_size)*self.max_value
elif self.mode == 'rand':
return np.random.random((1, 1, patch_size[-1]))*self.max_value
else:
return np.zeros((1, 1, patch_size[-1]))
def __call__(self, image, target):
if random.random() > self.prob:
return image, target
ih, iw, ic = image.shape
ia = ih * iw
count = self.min_count if self.min_count == self.max_count else \
random.randint(self.min_count, self.max_count)
erase_boxes = []
for _ in range(count):
for try_idx in range(10):
erase_area = random.uniform(self.era_l, self.era_h) * ia / count
aspect_ratio = math.exp(random.uniform(math.log(self.min_aspect), math.log(1/self.min_aspect)))
eh = int(round(math.sqrt(erase_area * aspect_ratio)))
ew = int(round(math.sqrt(erase_area / aspect_ratio)))
if eh < ih and ew < iw:
x = random.randint(0, iw - ew)
y = random.randint(0, ih - eh)
image[y:y+eh, x:x+ew, :] = self._get_pixels((eh, ew, ic))
erase_boxes.append([x,y,x+ew,y+eh])
break
if target is not None and len(erase_boxes)>0:
boxes = target.bbox.numpy()
labels = target.get_field('labels')
overlap = matrix_iou(np.array(erase_boxes), boxes, relative=True)
mask = overlap.max(axis=0)<self.max_overlap
boxes = boxes[mask]
labels = labels[mask]
target.bbox = torch.as_tensor(boxes, dtype=torch.float32)
target.add_field('labels', labels)
return image, target
|