File size: 15,342 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
import math
import torch
import torch.nn.functional as F
from torch import nn

from .inference import make_atss_postprocessor
from .loss import make_atss_loss_evaluator
from .anchor_generator import make_anchor_generator_complex

from maskrcnn_benchmark.structures.boxlist_ops import cat_boxlist
from maskrcnn_benchmark.layers import Scale, DYReLU, SELayer, ModulatedDeformConv
from maskrcnn_benchmark.layers import NaiveSyncBatchNorm2d, FrozenBatchNorm2d
from maskrcnn_benchmark.modeling.backbone.fbnet import *


class h_sigmoid(nn.Module):
    def __init__(self, inplace=True, h_max=1):
        super(h_sigmoid, self).__init__()
        self.relu = nn.ReLU6(inplace=inplace)
        self.h_max = h_max

    def forward(self, x):
        return self.relu(x + 3) * self.h_max / 6


class BoxCoder(object):

    def __init__(self, cfg):
        self.cfg = cfg

    def encode(self, gt_boxes, anchors):
        TO_REMOVE = 1  # TODO remove
        ex_widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE
        ex_heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE
        ex_ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2
        ex_ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2

        gt_widths = gt_boxes[:, 2] - gt_boxes[:, 0] + TO_REMOVE
        gt_heights = gt_boxes[:, 3] - gt_boxes[:, 1] + TO_REMOVE
        gt_ctr_x = (gt_boxes[:, 2] + gt_boxes[:, 0]) / 2
        gt_ctr_y = (gt_boxes[:, 3] + gt_boxes[:, 1]) / 2

        wx, wy, ww, wh = (10., 10., 5., 5.)
        targets_dx = wx * (gt_ctr_x - ex_ctr_x) / ex_widths
        targets_dy = wy * (gt_ctr_y - ex_ctr_y) / ex_heights
        targets_dw = ww * torch.log(gt_widths / ex_widths)
        targets_dh = wh * torch.log(gt_heights / ex_heights)
        targets = torch.stack((targets_dx, targets_dy, targets_dw, targets_dh), dim=1)

        return targets

    def decode(self, preds, anchors):
        anchors = anchors.to(preds.dtype)

        TO_REMOVE = 1  # TODO remove
        widths = anchors[:, 2] - anchors[:, 0] + TO_REMOVE
        heights = anchors[:, 3] - anchors[:, 1] + TO_REMOVE
        ctr_x = (anchors[:, 2] + anchors[:, 0]) / 2
        ctr_y = (anchors[:, 3] + anchors[:, 1]) / 2

        wx, wy, ww, wh = (10., 10., 5., 5.)
        dx = preds[:, 0::4] / wx
        dy = preds[:, 1::4] / wy
        dw = preds[:, 2::4] / ww
        dh = preds[:, 3::4] / wh

        # Prevent sending too large values into torch.exp()
        dw = torch.clamp(dw, max=math.log(1000. / 16))
        dh = torch.clamp(dh, max=math.log(1000. / 16))

        pred_ctr_x = dx * widths[:, None] + ctr_x[:, None]
        pred_ctr_y = dy * heights[:, None] + ctr_y[:, None]
        pred_w = torch.exp(dw) * widths[:, None]
        pred_h = torch.exp(dh) * heights[:, None]

        pred_boxes = torch.zeros_like(preds)
        pred_boxes[:, 0::4] = pred_ctr_x - 0.5 * (pred_w - 1)
        pred_boxes[:, 1::4] = pred_ctr_y - 0.5 * (pred_h - 1)
        pred_boxes[:, 2::4] = pred_ctr_x + 0.5 * (pred_w - 1)
        pred_boxes[:, 3::4] = pred_ctr_y + 0.5 * (pred_h - 1)

        return pred_boxes


class Conv3x3Norm(torch.nn.Module):
    def __init__(self,

                 in_channels,

                 out_channels,

                 stride,

                 groups=1,

                 deformable=False,

                 bn_type=None):
        super(Conv3x3Norm, self).__init__()

        if deformable:
            self.conv = ModulatedDeformConv(in_channels, out_channels, kernel_size=3, stride=stride, padding=1,
                                            groups=groups)
        else:
            self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, groups=groups)

        if isinstance(bn_type, (list, tuple)):
            assert len(bn_type) == 2
            assert bn_type[0] == "gn"
            gn_group = bn_type[1]
            bn_type = bn_type[0]

        if bn_type == "bn":
            bn_op = nn.BatchNorm2d(out_channels)
        elif bn_type == "sbn":
            bn_op = nn.SyncBatchNorm(out_channels)
        elif bn_type == "nsbn":
            bn_op = NaiveSyncBatchNorm2d(out_channels)
        elif bn_type == "gn":
            bn_op = nn.GroupNorm(num_groups=gn_group, num_channels=out_channels)
        elif bn_type == "af":
            bn_op = FrozenBatchNorm2d(out_channels)
        if bn_type is not None:
            self.bn = bn_op
        else:
            self.bn = None

    def forward(self, input, **kwargs):
        x = self.conv(input, **kwargs)
        if self.bn:
            x = self.bn(x)
        return x


class DyConv(torch.nn.Module):
    def __init__(self,

                 in_channels=256,

                 out_channels=256,

                 conv_func=nn.Conv2d,

                 use_dyfuse=True,

                 use_dyrelu=False,

                 use_deform=False

                 ):
        super(DyConv, self).__init__()

        self.DyConv = nn.ModuleList()
        self.DyConv.append(conv_func(in_channels, out_channels, 1))
        self.DyConv.append(conv_func(in_channels, out_channels, 1))
        self.DyConv.append(conv_func(in_channels, out_channels, 2))

        if use_dyfuse:
            self.AttnConv = nn.Sequential(
                nn.AdaptiveAvgPool2d(1),
                nn.Conv2d(in_channels, 1, kernel_size=1),
                nn.ReLU(inplace=True))
            self.h_sigmoid = h_sigmoid()
        else:
            self.AttnConv = None

        if use_dyrelu:
            self.relu = DYReLU(in_channels, out_channels)
        else:
            self.relu = nn.ReLU()

        if use_deform:
            self.offset = nn.Conv2d(in_channels, 27, kernel_size=3, stride=1, padding=1)
        else:
            self.offset = None

        self.init_weights()

    def init_weights(self):
        for m in self.DyConv.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.normal_(m.weight.data, 0, 0.01)
                if m.bias is not None:
                    m.bias.data.zero_()
        if self.AttnConv is not None:
            for m in self.AttnConv.modules():
                if isinstance(m, nn.Conv2d):
                    nn.init.normal_(m.weight.data, 0, 0.01)
                    if m.bias is not None:
                        m.bias.data.zero_()

    def forward(self, x):
        next_x = []
        for level, feature in enumerate(x):

            conv_args = dict()
            if self.offset is not None:
                offset_mask = self.offset(feature)
                offset = offset_mask[:, :18, :, :]
                mask = offset_mask[:, 18:, :, :].sigmoid()
                conv_args = dict(offset=offset, mask=mask)

            temp_fea = [self.DyConv[1](feature, **conv_args)]

            if level > 0:
                temp_fea.append(self.DyConv[2](x[level - 1], **conv_args))
            if level < len(x) - 1:
                temp_fea.append(F.upsample_bilinear(self.DyConv[0](x[level + 1], **conv_args),
                                                    size=[feature.size(2), feature.size(3)]))
            mean_fea = torch.mean(torch.stack(temp_fea), dim=0, keepdim=False)

            if self.AttnConv is not None:
                attn_fea = []
                res_fea = []
                for fea in temp_fea:
                    res_fea.append(fea)
                    attn_fea.append(self.AttnConv(fea))

                res_fea = torch.stack(res_fea)
                spa_pyr_attn = self.h_sigmoid(torch.stack(attn_fea))

                mean_fea = torch.mean(res_fea * spa_pyr_attn, dim=0, keepdim=False)

            next_x.append(mean_fea)

        next_x = [self.relu(item) for item in next_x]
        return next_x


class DyHead(torch.nn.Module):
    def __init__(self, cfg):
        super(DyHead, self).__init__()
        self.cfg = cfg
        num_classes = cfg.MODEL.DYHEAD.NUM_CLASSES - 1
        num_anchors = len(cfg.MODEL.RPN.ASPECT_RATIOS) * cfg.MODEL.RPN.SCALES_PER_OCTAVE
        in_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS
        channels = cfg.MODEL.DYHEAD.CHANNELS
        if cfg.MODEL.DYHEAD.USE_GN:
            bn_type = ['gn', cfg.MODEL.GROUP_NORM.NUM_GROUPS]
        elif cfg.MODEL.DYHEAD.USE_NSYNCBN:
            bn_type = 'nsbn'
        elif cfg.MODEL.DYHEAD.USE_SYNCBN:
            bn_type = 'sbn'
        else:
            bn_type = None

        use_dyrelu = cfg.MODEL.DYHEAD.USE_DYRELU
        use_dyfuse = cfg.MODEL.DYHEAD.USE_DYFUSE
        use_deform = cfg.MODEL.DYHEAD.USE_DFCONV

        if cfg.MODEL.DYHEAD.CONV_FUNC:
            conv_func = lambda i, o, s: eval(cfg.MODEL.DYHEAD.CONV_FUNC)(i, o, s, bn_type=bn_type)
        else:
            conv_func = lambda i, o, s: Conv3x3Norm(i, o, s, deformable=use_deform, bn_type=bn_type)

        dyhead_tower = []
        for i in range(cfg.MODEL.DYHEAD.NUM_CONVS):
            dyhead_tower.append(
                DyConv(
                    in_channels if i == 0 else channels,
                    channels,
                    conv_func=conv_func,
                    use_dyrelu=(use_dyrelu and in_channels == channels) if i == 0 else use_dyrelu,
                    use_dyfuse=(use_dyfuse and in_channels == channels) if i == 0 else use_dyfuse,
                    use_deform=(use_deform and in_channels == channels) if i == 0 else use_deform,
                )
            )

        self.add_module('dyhead_tower', nn.Sequential(*dyhead_tower))
        if cfg.MODEL.DYHEAD.COSINE_SCALE <= 0:
            self.cls_logits = nn.Conv2d(channels, num_anchors * num_classes, kernel_size=1)
            self.cls_logits_bias = None
        else:
            self.cls_logits = nn.Conv2d(channels, num_anchors * num_classes, kernel_size=1, bias=False)
            self.cls_logits_bias = nn.Parameter(torch.zeros(num_anchors * num_classes, requires_grad=True))
            self.cosine_scale = nn.Parameter(torch.ones(1) * cfg.MODEL.DYHEAD.COSINE_SCALE)
        self.bbox_pred = nn.Conv2d(channels, num_anchors * 4, kernel_size=1)
        self.centerness = nn.Conv2d(channels, num_anchors * 1, kernel_size=1)

        # initialization
        for modules in [self.cls_logits, self.bbox_pred,
                        self.centerness]:
            for l in modules.modules():
                if isinstance(l, nn.Conv2d):
                    torch.nn.init.normal_(l.weight, std=0.01)
                    if hasattr(l, 'bias') and l.bias is not None:
                        torch.nn.init.constant_(l.bias, 0)

        # initialize the bias for focal loss
        prior_prob = cfg.MODEL.DYHEAD.PRIOR_PROB
        bias_value = -math.log((1 - prior_prob) / prior_prob)
        if self.cls_logits_bias is None:
            torch.nn.init.constant_(self.cls_logits.bias, bias_value)
        else:
            torch.nn.init.constant_(self.cls_logits_bias, bias_value)

        self.scales = nn.ModuleList([Scale(init_value=1.0) for _ in range(5)])

    def extract_feature(self, x):
        output = []
        for i in range(len(self.dyhead_tower)):
            x = self.dyhead_tower[i](x)
            output.append(x)
        return output

    def forward(self, x):
        logits = []
        bbox_reg = []
        centerness = []

        dyhead_tower = self.dyhead_tower(x)

        for l, feature in enumerate(x):
            if self.cls_logits_bias is None:
                logit = self.cls_logits(dyhead_tower[l])
            else:
                # CosineSimOutputLayers: https://github.com/ucbdrive/few-shot-object-detection/blob/master/fsdet/modeling/roi_heads/fast_rcnn.py#L448-L464
                # normalize the input x along the `channel` dimension
                x_norm = torch.norm(dyhead_tower[l], p=2, dim=1, keepdim=True).expand_as(dyhead_tower[l])
                x_normalized = dyhead_tower[l].div(x_norm + 1e-5)
                # normalize weight
                temp_norm = (
                    torch.norm(self.cls_logits.weight.data, p=2, dim=1, keepdim=True)
                        .expand_as(self.cls_logits.weight.data)
                )
                self.cls_logits.weight.data = self.cls_logits.weight.data.div(
                    temp_norm + 1e-5
                )
                cos_dist = self.cls_logits(x_normalized)
                logit = self.cosine_scale * cos_dist + self.cls_logits_bias.reshape(1, len(self.cls_logits_bias), 1, 1)
            logits.append(logit)

            bbox_pred = self.scales[l](self.bbox_pred(dyhead_tower[l]))
            bbox_reg.append(bbox_pred)

            centerness.append(self.centerness(dyhead_tower[l]))
        return logits, bbox_reg, centerness


class DyHeadModule(torch.nn.Module):

    def __init__(self, cfg):
        super(DyHeadModule, self).__init__()
        self.cfg = cfg
        self.head = DyHead(cfg)
        box_coder = BoxCoder(cfg)
        self.loss_evaluator = make_atss_loss_evaluator(cfg, box_coder)
        self.box_selector_train = make_atss_postprocessor(cfg, box_coder, is_train=True)
        self.box_selector_test = make_atss_postprocessor(cfg, box_coder, is_train=False)
        self.anchor_generator = make_anchor_generator_complex(cfg)

    def forward(self, images, features, targets=None):
        box_cls, box_regression, centerness = self.head(features)
        anchors = self.anchor_generator(images, features)

        if self.training:
            return self._forward_train(box_cls, box_regression, centerness, targets, anchors)
        else:
            return self._forward_test(box_cls, box_regression, centerness, anchors)

    def _forward_train(self, box_cls, box_regression, centerness, targets, anchors):
        loss_box_cls, loss_box_reg, loss_centerness, _, _, _, _ = self.loss_evaluator(
            box_cls, box_regression, centerness, targets, anchors
        )
        losses = {
            "loss_cls": loss_box_cls,
            "loss_reg": loss_box_reg,
            "loss_centerness": loss_centerness
        }
        if self.cfg.MODEL.RPN_ONLY:
            return None, losses
        else:
            # boxes = self.box_selector_train(box_cls, box_regression, centerness, anchors)
            boxes = self.box_selector_train(box_regression, centerness, anchors, box_cls)
            train_boxes = []
            # for b, a in zip(boxes, anchors):
            #     a = cat_boxlist(a)
            #     b.add_field("visibility", torch.ones(b.bbox.shape[0], dtype=torch.bool, device=b.bbox.device))
            #     del b.extra_fields['scores']
            #     del b.extra_fields['labels']
            #     train_boxes.append(cat_boxlist([b, a]))
            for b, t in zip(boxes, targets):
                tb = t.copy_with_fields(["labels"])
                tb.add_field("scores", torch.ones(tb.bbox.shape[0], dtype=torch.bool, device=tb.bbox.device))
                train_boxes.append(cat_boxlist([b, tb]))
            return train_boxes, losses

    def _forward_test(self, box_cls, box_regression, centerness, anchors):
        boxes = self.box_selector_test(box_regression, centerness, anchors, box_cls)
        return boxes, {}