Spaces:
Runtime error
Runtime error
File size: 16,079 Bytes
128757a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import datetime
import logging
import sys
import os
import math
import time
import torch
import torch.distributed as dist
from maskrcnn_benchmark.utils.comm import get_world_size, all_gather, is_main_process, broadcast_data, get_rank
from maskrcnn_benchmark.utils.metric_logger import MetricLogger
from maskrcnn_benchmark.utils.ema import ModelEma
from maskrcnn_benchmark.utils.amp import autocast, GradScaler
from maskrcnn_benchmark.data.datasets.evaluation import evaluate
from .inference import inference
import pdb
def reduce_loss_dict(loss_dict):
"""
Reduce the loss dictionary from all processes so that process with rank
0 has the averaged results. Returns a dict with the same fields as
loss_dict, after reduction.
"""
world_size = get_world_size()
if world_size < 2:
return loss_dict
with torch.no_grad():
loss_names = []
all_losses = []
for k in sorted(loss_dict.keys()):
loss_names.append(k)
all_losses.append(loss_dict[k])
all_losses = torch.stack(all_losses, dim=0)
dist.reduce(all_losses, dst=0)
if dist.get_rank() == 0:
# only main process gets accumulated, so only divide by
# world_size in this case
all_losses /= world_size
reduced_losses = {k: v for k, v in zip(loss_names, all_losses)}
return reduced_losses
def do_train(
cfg,
model,
data_loader,
optimizer,
scheduler,
checkpointer,
device,
checkpoint_period,
arguments,
val_data_loader=None,
meters=None,
zero_shot=False
):
logger = logging.getLogger("maskrcnn_benchmark.trainer")
logger.info("Start training")
# meters = MetricLogger(delimiter=" ")
max_iter = len(data_loader)
start_iter = arguments["iteration"]
model.train()
model_ema = None
if cfg.SOLVER.MODEL_EMA > 0:
model_ema = ModelEma(model, decay=cfg.SOLVER.MODEL_EMA)
start_training_time = time.time()
end = time.time()
if cfg.SOLVER.USE_AMP:
scaler = GradScaler()
global_rank = get_rank()
if cfg.SOLVER.CHECKPOINT_PER_EPOCH != -1 and cfg.SOLVER.MAX_EPOCH >= 1:
checkpoint_period = len(data_loader) * cfg.SOLVER.CHECKPOINT_PER_EPOCH // cfg.SOLVER.MAX_EPOCH
if global_rank <= 0 and cfg.SOLVER.MAX_EPOCH >= 1:
print("Iter per epoch ", len(data_loader) // cfg.SOLVER.MAX_EPOCH )
if cfg.SOLVER.AUTO_TERMINATE_PATIENCE != -1:
patience_counter = 0
previous_best = 0.0
# Adapt the weight decay
if cfg.SOLVER.WEIGHT_DECAY_SCHEDULE and hasattr(scheduler, 'milestones'):
milestone_target = 0
for i, milstone in enumerate(list(scheduler.milestones)):
if scheduler.last_epoch >= milstone * cfg.SOLVER.WEIGHT_DECAY_SCHEDULE_RATIO:
milestone_target = i+1
for iteration, (images, targets, idxs, positive_map, positive_map_eval, greenlight_map) in enumerate(data_loader, start_iter):
nnegative = sum(len(target) < 1 for target in targets)
nsample = len(targets)
if nsample == nnegative or nnegative > nsample * cfg.SOLVER.MAX_NEG_PER_BATCH:
logger.info('[WARNING] Sampled {} negative in {} in a batch, greater the allowed ratio {}, skip'.
format(nnegative, nsample, cfg.SOLVER.MAX_NEG_PER_BATCH))
continue
data_time = time.time() - end
iteration = iteration + 1
arguments["iteration"] = iteration
images = images.to(device)
captions = None
try:
targets = [target.to(device) for target in targets]
captions = [t.get_field("caption") for t in targets if "caption" in t.fields()]
except:
pass
# Freeze language backbone
if cfg.MODEL.LANGUAGE_BACKBONE.FREEZE:
if hasattr(model, "module"):
model.module.language_backbone.eval()
else:
model.language_backbone.eval()
if cfg.SOLVER.USE_AMP:
with autocast():
if len(captions) > 0:
loss_dict = model(images, targets, captions, positive_map, greenlight_map = greenlight_map)
else:
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
# save checkpoints for further debug if nan happens
# loss_value = losses.item()
# if not math.isfinite(loss_value):
# logging.error(f'=> loss is {loss_value}, stopping training')
# logging.error("Losses are : {}".format(loss_dict))
# time_str = time.strftime('%Y-%m-%d-%H-%M')
# fname = os.path.join(checkpointer.save_dir, f'{time_str}_states.pth')
# logging.info(f'=> save error state to {fname}')
# dict_to_save = {
# 'x': images,
# 'y': targets,
# 'loss': losses,
# 'states': model.module.state_dict() if hasattr(model, 'module') else model.state_dict()
# }
# if len(captions) > 0:
# dict_to_save['captions'] = captions
# dict_to_save['positive_map'] = positive_map
# torch.save(
# dict_to_save,
# fname
# )
if torch.isnan(losses) or torch.isinf(losses):
logging.error("NaN encountered, ignoring")
losses[losses != losses] = 0
optimizer.zero_grad()
scaler.scale(losses).backward()
scaler.step(optimizer)
scaler.update()
scheduler.step()
else:
if len(captions) > 0:
loss_dict = model(images, targets, captions, positive_map)
else:
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
# loss_value = losses.item()
# if not math.isfinite(loss_value):
# logging.error(f'=> loss is {loss_value}, stopping training')
# time_str = time.strftime('%Y-%m-%d-%H-%M')
# fname = os.path.join(checkpointer.save_dir, f'{time_str}_states.pth')
# logging.info(f'=> save error state to {fname}')
# dict_to_save = {
# 'x': images,
# 'y': targets,
# 'loss': losses,
# 'states': model.module.state_dict() if hasattr(model, 'module') else model.state_dict()
# }
# if len(captions) > 0:
# dict_to_save['captions'] = captions
# dict_to_save['positive_map'] = positive_map
# torch.save(
# dict_to_save,
# fname
# )
if torch.isnan(losses) or torch.isinf(losses):
losses[losses != losses] = 0
optimizer.zero_grad()
losses.backward()
optimizer.step()
scheduler.step()
# Adapt the weight decay: only support multiStepLR
if cfg.SOLVER.WEIGHT_DECAY_SCHEDULE and hasattr(scheduler, 'milestones'):
if milestone_target < len(scheduler.milestones):
next_milestone = list(scheduler.milestones)[milestone_target]
else:
next_milestone = float('inf')
if scheduler.last_epoch >= next_milestone * cfg.SOLVER.WEIGHT_DECAY_SCHEDULE_RATIO:
gamma = scheduler.gamma
logger.info("Drop the weight decay by {}!".format(gamma))
for param in optimizer.param_groups:
if 'weight_decay' in param:
param['weight_decay'] *= gamma
# move the target forward
milestone_target += 1
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = reduce_loss_dict(loss_dict)
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
meters.update(loss=losses_reduced, **loss_dict_reduced)
if model_ema is not None:
model_ema.update(model)
arguments["model_ema"] = model_ema.state_dict()
batch_time = time.time() - end
end = time.time()
meters.update(time=batch_time, data=data_time)
eta_seconds = meters.time.global_avg * (max_iter - iteration)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if iteration % 20 == 0 or iteration == max_iter:
# if iteration % 1 == 0 or iteration == max_iter:
#logger.info(
if global_rank <= 0:
print(
meters.delimiter.join(
[
"eta: {eta}",
"iter: {iter}",
"{meters}",
"lr: {lr:.6f}",
"wd: {wd:.6f}",
"max mem: {memory:.0f}",
]
).format(
eta=eta_string,
iter=iteration,
meters=str(meters),
lr=optimizer.param_groups[0]["lr"],
wd=optimizer.param_groups[0]["weight_decay"],
memory=torch.cuda.max_memory_allocated() / 1024.0 / 1024.0,
)
)
if val_data_loader and (iteration % checkpoint_period == 0 or iteration == max_iter):
if is_main_process():
print("Evaluating")
eval_result = 0.0
model.eval()
if cfg.SOLVER.TEST_WITH_INFERENCE:
with torch.no_grad():
try:
_model = model.module
except:
_model = model
_result = inference(
model = _model,
data_loader = val_data_loader,
dataset_name="val",
device=device,
expected_results=cfg.TEST.EXPECTED_RESULTS,
expected_results_sigma_tol=cfg.TEST.EXPECTED_RESULTS_SIGMA_TOL,
output_folder=None,
cfg=cfg,
verbose=False
)
if is_main_process():
eval_result = _result[0].results['bbox']['AP']
else:
results_dict = {}
cpu_device = torch.device("cpu")
for i, batch in enumerate(val_data_loader):
images, targets, image_ids, positive_map, *_ = batch
with torch.no_grad():
images = images.to(device)
if positive_map is None:
output = model(images)
else:
captions = [t.get_field("caption") for t in targets if "caption" in t.fields()]
output = model(images, captions, positive_map)
output = [o.to(cpu_device) for o in output]
results_dict.update(
{img_id: result for img_id, result in zip(image_ids, output)}
)
all_predictions = all_gather(results_dict)
if is_main_process():
predictions = {}
for p in all_predictions:
predictions.update(p)
predictions = [predictions[i] for i in list(sorted(predictions.keys()))]
eval_result, _ = evaluate(val_data_loader.dataset, predictions, output_folder=None,
box_only=cfg.DATASETS.CLASS_AGNOSTIC)
if cfg.DATASETS.CLASS_AGNOSTIC:
eval_result = eval_result.results['box_proposal']['AR@100']
else:
eval_result = eval_result.results['bbox']['AP']
model.train()
if model_ema is not None and cfg.SOLVER.USE_EMA_FOR_MONITOR:
model_ema.ema.eval()
results_dict = {}
cpu_device = torch.device("cpu")
for i, batch in enumerate(val_data_loader):
images, targets, image_ids, positive_map, positive_map_eval = batch
with torch.no_grad():
images = images.to(device)
if positive_map is None:
output = model_ema.ema(images)
else:
captions = [t.get_field("caption") for t in targets if "caption" in t.fields()]
output = model_ema.ema(images, captions, positive_map)
output = [o.to(cpu_device) for o in output]
results_dict.update(
{img_id: result for img_id, result in zip(image_ids, output)}
)
all_predictions = all_gather(results_dict)
if is_main_process():
predictions = {}
for p in all_predictions:
predictions.update(p)
predictions = [predictions[i] for i in list(sorted(predictions.keys()))]
eval_result, _ = evaluate(val_data_loader.dataset, predictions, output_folder=None,
box_only=cfg.DATASETS.CLASS_AGNOSTIC)
if cfg.DATASETS.CLASS_AGNOSTIC:
eval_result = eval_result.results['box_proposal']['AR@100']
else:
eval_result = eval_result.results['bbox']['AP']
arguments.update(eval_result=eval_result)
if cfg.SOLVER.USE_AUTOSTEP:
eval_result = all_gather(eval_result)[0] #broadcast_data([eval_result])[0]
# print("Rank {} eval result gathered".format(cfg.local_rank), eval_result)
scheduler.step(eval_result)
if cfg.SOLVER.AUTO_TERMINATE_PATIENCE != -1:
if eval_result < previous_best:
patience_counter += 1
else:
patience_counter = 0
previous_best = eval_result
checkpointer.save("model_best", **arguments)
print("Previous Best", previous_best, "Patience Counter", patience_counter, "Eval Result", eval_result)
if patience_counter >= cfg.SOLVER.AUTO_TERMINATE_PATIENCE:
if is_main_process():
print("\n\n\n\nAuto Termination at {}, current best {}\n\n\n".format(iteration, previous_best))
break
if iteration % checkpoint_period == 0:
checkpointer.save("model_{:07d}".format(iteration), **arguments)
if iteration == max_iter:
checkpointer.save("model_final", **arguments)
break
total_training_time = time.time() - start_training_time
total_time_str = str(datetime.timedelta(seconds=total_training_time))
logger.info(
"Total training time: {} ({:.4f} s / it)".format(
total_time_str, total_training_time / (max_iter)
)
)
|