File size: 6,871 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""

helper class that supports empty tensors on some nn functions.



Ideally, add support directly in PyTorch to empty tensors in

those functions.



This can be removed once https://github.com/pytorch/pytorch/issues/12013

is implemented

"""

import math
import torch
from torch.nn.modules.utils import _ntuple


class _NewEmptyTensorOp(torch.autograd.Function):
    @staticmethod
    def forward(ctx, x, new_shape):
        ctx.shape = x.shape
        return x.new_empty(new_shape)

    @staticmethod
    def backward(ctx, grad):
        shape = ctx.shape
        return _NewEmptyTensorOp.apply(grad, shape), None


class Conv2d(torch.nn.Conv2d):
    def forward(self, x):
        if x.numel() > 0:
            return super(Conv2d, self).forward(x)
        # get output shape

        output_shape = [
            (i + 2 * p - (di * (k - 1) + 1)) // d + 1
            for i, p, di, k, d in zip(
                x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride
            )
        ]
        output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
        return _NewEmptyTensorOp.apply(x, output_shape)


class ConvTranspose2d(torch.nn.ConvTranspose2d):
    def forward(self, x):
        if x.numel() > 0:
            return super(ConvTranspose2d, self).forward(x)
        # get output shape

        output_shape = [
            (i - 1) * d - 2 * p + (di * (k - 1) + 1) + op
            for i, p, di, k, d, op in zip(
                x.shape[-2:],
                self.padding,
                self.dilation,
                self.kernel_size,
                self.stride,
                self.output_padding,
            )
        ]
        output_shape = [x.shape[0], self.bias.shape[0]] + output_shape
        return _NewEmptyTensorOp.apply(x, output_shape)


class BatchNorm2d(torch.nn.BatchNorm2d):
    def forward(self, x):
        if x.numel() > 0:
            return super(BatchNorm2d, self).forward(x)
        # get output shape
        output_shape = x.shape
        return _NewEmptyTensorOp.apply(x, output_shape)


def interpolate(

    input, size=None, scale_factor=None, mode="nearest", align_corners=None

):
    if input.numel() > 0:
        return torch.nn.functional.interpolate(
            input, size, scale_factor, mode, align_corners
        )

    def _check_size_scale_factor(dim):
        if size is None and scale_factor is None:
            raise ValueError("either size or scale_factor should be defined")
        if size is not None and scale_factor is not None:
            raise ValueError("only one of size or scale_factor should be defined")
        if (
            scale_factor is not None
            and isinstance(scale_factor, tuple)
            and len(scale_factor) != dim
        ):
            raise ValueError(
                "scale_factor shape must match input shape. "
                "Input is {}D, scale_factor size is {}".format(dim, len(scale_factor))
            )

    def _output_size(dim):
        _check_size_scale_factor(dim)
        if size is not None:
            return size
        scale_factors = _ntuple(dim)(scale_factor)
        # math.floor might return float in py2.7
        return [
            int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim)
        ]

    output_shape = tuple(_output_size(2))
    output_shape = input.shape[:-2] + output_shape
    return _NewEmptyTensorOp.apply(input, output_shape)


class Scale(torch.nn.Module):
    def __init__(self, init_value=1.0):
        super(Scale, self).__init__()
        self.scale = torch.nn.Parameter(torch.FloatTensor([init_value]))

    def forward(self, input):
        return input * self.scale


class DFConv2d(torch.nn.Module):
    """Deformable convolutional layer"""
    def __init__(

        self,

        in_channels,

        out_channels,

        with_modulated_dcn=True,

        kernel_size=3,

        stride=1,

        groups=1,

        padding=1,

        dilation=1,

        deformable_groups=1,

        bias=False

    ):
        super(DFConv2d, self).__init__()
        if isinstance(kernel_size, (list, tuple)):
            assert len(kernel_size) == 2
            offset_base_channels = kernel_size[0] * kernel_size[1]
        else:
            offset_base_channels = kernel_size * kernel_size
        if with_modulated_dcn:
            from maskrcnn_benchmark.layers import ModulatedDeformConv
            offset_channels = offset_base_channels * 3 #default: 27
            conv_block = ModulatedDeformConv
        else:
            from maskrcnn_benchmark.layers import DeformConv
            offset_channels = offset_base_channels * 2 #default: 18
            conv_block = DeformConv
        self.offset = Conv2d(
            in_channels,
            deformable_groups * offset_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            groups=1,
            dilation=dilation
        )
        for l in [self.offset, ]:
            torch.nn.init.kaiming_uniform_(l.weight, a=1)
            torch.nn.init.constant_(l.bias, 0.)
        self.conv = conv_block(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            deformable_groups=deformable_groups,
            bias=bias
        )
        self.with_modulated_dcn = with_modulated_dcn
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.offset_base_channels = offset_base_channels

    def forward(self, x):
        if x.numel() > 0:
            if not self.with_modulated_dcn:
                offset = self.offset(x)
                x = self.conv(x, offset)
            else:
                offset_mask = self.offset(x)
                split_point = self.offset_base_channels * 2
                offset = offset_mask[:, :split_point, :, :]
                mask = offset_mask[:, split_point:, :, :].sigmoid()
                x = self.conv(x, offset, mask)
            return x
        # get output shape
        output_shape = [
            (i + 2 * p - (di * (k - 1) + 1)) // d + 1
            for i, p, di, k, d in zip(
                x.shape[-2:],
                self.padding,
                self.dilation,
                self.kernel_size,
                self.stride
            )
        ]
        output_shape = [x.shape[0], self.conv.weight.shape[0]] + output_shape
        return _NewEmptyTensorOp.apply(x, output_shape)