Spaces:
Runtime error
Runtime error
File size: 6,871 Bytes
128757a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
"""
helper class that supports empty tensors on some nn functions.
Ideally, add support directly in PyTorch to empty tensors in
those functions.
This can be removed once https://github.com/pytorch/pytorch/issues/12013
is implemented
"""
import math
import torch
from torch.nn.modules.utils import _ntuple
class _NewEmptyTensorOp(torch.autograd.Function):
@staticmethod
def forward(ctx, x, new_shape):
ctx.shape = x.shape
return x.new_empty(new_shape)
@staticmethod
def backward(ctx, grad):
shape = ctx.shape
return _NewEmptyTensorOp.apply(grad, shape), None
class Conv2d(torch.nn.Conv2d):
def forward(self, x):
if x.numel() > 0:
return super(Conv2d, self).forward(x)
# get output shape
output_shape = [
(i + 2 * p - (di * (k - 1) + 1)) // d + 1
for i, p, di, k, d in zip(
x.shape[-2:], self.padding, self.dilation, self.kernel_size, self.stride
)
]
output_shape = [x.shape[0], self.weight.shape[0]] + output_shape
return _NewEmptyTensorOp.apply(x, output_shape)
class ConvTranspose2d(torch.nn.ConvTranspose2d):
def forward(self, x):
if x.numel() > 0:
return super(ConvTranspose2d, self).forward(x)
# get output shape
output_shape = [
(i - 1) * d - 2 * p + (di * (k - 1) + 1) + op
for i, p, di, k, d, op in zip(
x.shape[-2:],
self.padding,
self.dilation,
self.kernel_size,
self.stride,
self.output_padding,
)
]
output_shape = [x.shape[0], self.bias.shape[0]] + output_shape
return _NewEmptyTensorOp.apply(x, output_shape)
class BatchNorm2d(torch.nn.BatchNorm2d):
def forward(self, x):
if x.numel() > 0:
return super(BatchNorm2d, self).forward(x)
# get output shape
output_shape = x.shape
return _NewEmptyTensorOp.apply(x, output_shape)
def interpolate(
input, size=None, scale_factor=None, mode="nearest", align_corners=None
):
if input.numel() > 0:
return torch.nn.functional.interpolate(
input, size, scale_factor, mode, align_corners
)
def _check_size_scale_factor(dim):
if size is None and scale_factor is None:
raise ValueError("either size or scale_factor should be defined")
if size is not None and scale_factor is not None:
raise ValueError("only one of size or scale_factor should be defined")
if (
scale_factor is not None
and isinstance(scale_factor, tuple)
and len(scale_factor) != dim
):
raise ValueError(
"scale_factor shape must match input shape. "
"Input is {}D, scale_factor size is {}".format(dim, len(scale_factor))
)
def _output_size(dim):
_check_size_scale_factor(dim)
if size is not None:
return size
scale_factors = _ntuple(dim)(scale_factor)
# math.floor might return float in py2.7
return [
int(math.floor(input.size(i + 2) * scale_factors[i])) for i in range(dim)
]
output_shape = tuple(_output_size(2))
output_shape = input.shape[:-2] + output_shape
return _NewEmptyTensorOp.apply(input, output_shape)
class Scale(torch.nn.Module):
def __init__(self, init_value=1.0):
super(Scale, self).__init__()
self.scale = torch.nn.Parameter(torch.FloatTensor([init_value]))
def forward(self, input):
return input * self.scale
class DFConv2d(torch.nn.Module):
"""Deformable convolutional layer"""
def __init__(
self,
in_channels,
out_channels,
with_modulated_dcn=True,
kernel_size=3,
stride=1,
groups=1,
padding=1,
dilation=1,
deformable_groups=1,
bias=False
):
super(DFConv2d, self).__init__()
if isinstance(kernel_size, (list, tuple)):
assert len(kernel_size) == 2
offset_base_channels = kernel_size[0] * kernel_size[1]
else:
offset_base_channels = kernel_size * kernel_size
if with_modulated_dcn:
from maskrcnn_benchmark.layers import ModulatedDeformConv
offset_channels = offset_base_channels * 3 #default: 27
conv_block = ModulatedDeformConv
else:
from maskrcnn_benchmark.layers import DeformConv
offset_channels = offset_base_channels * 2 #default: 18
conv_block = DeformConv
self.offset = Conv2d(
in_channels,
deformable_groups * offset_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
groups=1,
dilation=dilation
)
for l in [self.offset, ]:
torch.nn.init.kaiming_uniform_(l.weight, a=1)
torch.nn.init.constant_(l.bias, 0.)
self.conv = conv_block(
in_channels,
out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=groups,
deformable_groups=deformable_groups,
bias=bias
)
self.with_modulated_dcn = with_modulated_dcn
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.offset_base_channels = offset_base_channels
def forward(self, x):
if x.numel() > 0:
if not self.with_modulated_dcn:
offset = self.offset(x)
x = self.conv(x, offset)
else:
offset_mask = self.offset(x)
split_point = self.offset_base_channels * 2
offset = offset_mask[:, :split_point, :, :]
mask = offset_mask[:, split_point:, :, :].sigmoid()
x = self.conv(x, offset, mask)
return x
# get output shape
output_shape = [
(i + 2 * p - (di * (k - 1) + 1)) // d + 1
for i, p, di, k, d in zip(
x.shape[-2:],
self.padding,
self.dilation,
self.kernel_size,
self.stride
)
]
output_shape = [x.shape[0], self.conv.weight.shape[0]] + output_shape
return _NewEmptyTensorOp.apply(x, output_shape)
|