File size: 7,470 Bytes
128757a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
from torch.nn import functional as F

from maskrcnn_benchmark.layers import smooth_l1_loss
from maskrcnn_benchmark.modeling.matcher import Matcher
from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou
from maskrcnn_benchmark.modeling.utils import cat


def project_masks_on_boxes(segmentation_masks, proposals, discretization_size):
    """

    Given segmentation masks and the bounding boxes corresponding

    to the location of the masks in the image, this function

    crops and resizes the masks in the position defined by the

    boxes. This prepares the masks for them to be fed to the

    loss computation as the targets.



    Arguments:

        segmentation_masks: an instance of SegmentationMask

        proposals: an instance of BoxList

    """
    masks = []
    M = discretization_size
    device = proposals.bbox.device
    proposals = proposals.convert("xyxy")
    assert segmentation_masks.size == proposals.size, "{}, {}".format(
        segmentation_masks, proposals
    )
    # TODO put the proposals on the CPU, as the representation for the
    # masks is not efficient GPU-wise (possibly several small tensors for
    # representing a single instance mask)
    proposals = proposals.bbox.to(torch.device("cpu"))
    for segmentation_mask, proposal in zip(segmentation_masks, proposals):
        # crop the masks, resize them to the desired resolution and
        # then convert them to the tensor representation,
        # instead of the list representation that was used
        cropped_mask = segmentation_mask.crop(proposal)
        scaled_mask = cropped_mask.resize((M, M))
        mask = scaled_mask.convert(mode="mask")
        masks.append(mask)
    if len(masks) == 0:
        return torch.empty(0, dtype=torch.float32, device=device)
    return torch.stack(masks, dim=0).to(device, dtype=torch.float32)


class MaskRCNNLossComputation(object):
    def __init__(self, proposal_matcher, discretization_size, vl_version=False):
        """

        Arguments:

            proposal_matcher (Matcher)

            discretization_size (int)

        """
        self.proposal_matcher = proposal_matcher
        self.discretization_size = discretization_size
        self.vl_version = vl_version

    def match_targets_to_proposals(self, proposal, target):
        match_quality_matrix = boxlist_iou(target, proposal)
        matched_idxs = self.proposal_matcher(match_quality_matrix)
        # Mask RCNN needs "labels" and "masks "fields for creating the targets
        if self.vl_version:
            target = target.copy_with_fields(["positive_map", "masks"])
        else:
            target = target.copy_with_fields(["labels", "masks"])
        # get the targets corresponding GT for each proposal
        # NB: need to clamp the indices because we can have a single
        # GT in the image, and matched_idxs can be -2, which goes
        # out of bounds
        matched_targets = target[matched_idxs.clamp(min=0)]
        matched_targets.add_field("matched_idxs", matched_idxs)
        return matched_targets

    def prepare_targets(self, proposals, targets):
        labels = []
        masks = []
        positive_maps = []
        for proposals_per_image, targets_per_image in zip(proposals, targets):
            matched_targets = self.match_targets_to_proposals(
                proposals_per_image, targets_per_image
            )
            matched_idxs = matched_targets.get_field("matched_idxs")

            if self.vl_version:
                positive_maps_per_image = matched_targets.get_field("positive_map")

                # this can probably be removed, but is left here for clarity
                # and completeness
                neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD
                positive_maps_per_image[neg_inds, :] = 0

                positive_maps.append(positive_maps_per_image)

                # TODO: make sure for the softmax [NoObj] case
                labels_per_image = positive_maps_per_image.sum(dim=-1)
                labels_per_image = labels_per_image.to(dtype=torch.int64)
            else:
                labels_per_image = matched_targets.get_field("labels")
                labels_per_image = labels_per_image.to(dtype=torch.int64)

                # this can probably be removed, but is left here for clarity
                # and completeness
                neg_inds = matched_idxs == Matcher.BELOW_LOW_THRESHOLD
                labels_per_image[neg_inds] = 0

            # mask scores are only computed on positive samples
            positive_inds = torch.nonzero(labels_per_image > 0).squeeze(1)

            segmentation_masks = matched_targets.get_field("masks")
            segmentation_masks = segmentation_masks[positive_inds]

            positive_proposals = proposals_per_image[positive_inds]

            masks_per_image = project_masks_on_boxes(
                segmentation_masks, positive_proposals, self.discretization_size
            )

            labels.append(labels_per_image)
            masks.append(masks_per_image)

        return labels, masks, positive_maps

    def __call__(self, proposals, mask_logits, targets):
        """

        Arguments:

            proposals (list[BoxList])

            mask_logits (Tensor)

            targets (list[BoxList])



        Return:

            mask_loss (Tensor): scalar tensor containing the loss

        """
        labels, mask_targets, positive_maps = self.prepare_targets(proposals, targets)

        labels = cat(labels, dim=0)
        mask_targets = cat(mask_targets, dim=0)

        positive_inds = torch.nonzero(labels > 0).squeeze(1)
        labels_pos = labels[positive_inds]
        # TODO: a hack for binary mask head
        labels_pos = (labels_pos > 0).to(dtype=torch.int64)

        # torch.mean (in binary_cross_entropy_with_logits) doesn't
        # accept empty tensors, so handle it separately
        if mask_targets.numel() == 0:
            return mask_logits.sum() * 0

        if self.vl_version:
            positive_maps = cat(positive_maps, dim=0)
            mask_logits_pos = []
            for positive_ind in positive_inds:
                positive_map = positive_maps[positive_ind]
                # TODO: make sure for the softmax [NoObj] case
                mask_logit_pos = mask_logits[positive_ind][torch.nonzero(positive_map).squeeze(1)].mean(dim=0, keepdim=True)
                mask_logits_pos.append(mask_logit_pos)
            mask_logits_pos = cat(mask_logits_pos, dim=0)
            mask_loss = F.binary_cross_entropy_with_logits(
                mask_logits_pos, mask_targets
            )
        else:
            mask_loss = F.binary_cross_entropy_with_logits(
                mask_logits[positive_inds, labels_pos], mask_targets
            )
        return mask_loss


def make_roi_mask_loss_evaluator(cfg):
    matcher = Matcher(
        cfg.MODEL.ROI_HEADS.FG_IOU_THRESHOLD,
        cfg.MODEL.ROI_HEADS.BG_IOU_THRESHOLD,
        allow_low_quality_matches=False,
    )

    loss_evaluator = MaskRCNNLossComputation(
        matcher, cfg.MODEL.ROI_MASK_HEAD.RESOLUTION,
        vl_version=cfg.MODEL.ROI_MASK_HEAD.PREDICTOR.startswith("VL")
    )

    return loss_evaluator