Spaces:
Runtime error
Runtime error
import torch | |
import math | |
from torch import nn | |
from torch.nn import init | |
from torch.nn.modules.utils import _pair | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from maskrcnn_benchmark.utils.amp import custom_fwd, custom_bwd | |
from maskrcnn_benchmark import _C | |
class DeformConvFunction(Function): | |
def forward( | |
ctx, | |
input, | |
offset, | |
weight, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1, | |
im2col_step=64 | |
): | |
if input is not None and input.dim() != 4: | |
raise ValueError( | |
"Expected 4D tensor as input, got {}D tensor instead.".format( | |
input.dim())) | |
ctx.stride = _pair(stride) | |
ctx.padding = _pair(padding) | |
ctx.dilation = _pair(dilation) | |
ctx.groups = groups | |
ctx.deformable_groups = deformable_groups | |
ctx.im2col_step = im2col_step | |
ctx.save_for_backward(input, offset, weight) | |
output = input.new_empty( | |
DeformConvFunction._output_size(input, weight, ctx.padding, | |
ctx.dilation, ctx.stride)) | |
ctx.bufs_ = [input.new_empty(0), input.new_empty(0)] # columns, ones | |
if not input.is_cuda: | |
raise NotImplementedError | |
else: | |
cur_im2col_step = min(ctx.im2col_step, input.shape[0]) | |
assert (input.shape[0] % | |
cur_im2col_step) == 0, 'im2col step must divide batchsize' | |
_C.deform_conv_forward( | |
input, | |
weight, | |
offset, | |
output, | |
ctx.bufs_[0], | |
ctx.bufs_[1], | |
weight.size(3), | |
weight.size(2), | |
ctx.stride[1], | |
ctx.stride[0], | |
ctx.padding[1], | |
ctx.padding[0], | |
ctx.dilation[1], | |
ctx.dilation[0], | |
ctx.groups, | |
ctx.deformable_groups, | |
cur_im2col_step | |
) | |
return output | |
def backward(ctx, grad_output): | |
input, offset, weight = ctx.saved_tensors | |
grad_input = grad_offset = grad_weight = None | |
if not grad_output.is_cuda: | |
raise NotImplementedError | |
else: | |
cur_im2col_step = min(ctx.im2col_step, input.shape[0]) | |
assert (input.shape[0] % | |
cur_im2col_step) == 0, 'im2col step must divide batchsize' | |
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]: | |
grad_input = torch.zeros_like(input) | |
grad_offset = torch.zeros_like(offset) | |
_C.deform_conv_backward_input( | |
input, | |
offset, | |
grad_output, | |
grad_input, | |
grad_offset, | |
weight, | |
ctx.bufs_[0], | |
weight.size(3), | |
weight.size(2), | |
ctx.stride[1], | |
ctx.stride[0], | |
ctx.padding[1], | |
ctx.padding[0], | |
ctx.dilation[1], | |
ctx.dilation[0], | |
ctx.groups, | |
ctx.deformable_groups, | |
cur_im2col_step | |
) | |
if ctx.needs_input_grad[2]: | |
grad_weight = torch.zeros_like(weight) | |
_C.deform_conv_backward_parameters( | |
input, | |
offset, | |
grad_output, | |
grad_weight, | |
ctx.bufs_[0], | |
ctx.bufs_[1], | |
weight.size(3), | |
weight.size(2), | |
ctx.stride[1], | |
ctx.stride[0], | |
ctx.padding[1], | |
ctx.padding[0], | |
ctx.dilation[1], | |
ctx.dilation[0], | |
ctx.groups, | |
ctx.deformable_groups, | |
1, | |
cur_im2col_step | |
) | |
return (grad_input, grad_offset, grad_weight, None, None, None, None, None) | |
def _output_size(input, weight, padding, dilation, stride): | |
channels = weight.size(0) | |
output_size = (input.size(0), channels) | |
for d in range(input.dim() - 2): | |
in_size = input.size(d + 2) | |
pad = padding[d] | |
kernel = dilation[d] * (weight.size(d + 2) - 1) + 1 | |
stride_ = stride[d] | |
output_size += ((in_size + (2 * pad) - kernel) // stride_ + 1, ) | |
if not all(map(lambda s: s > 0, output_size)): | |
raise ValueError( | |
"convolution input is too small (output would be {})".format( | |
'x'.join(map(str, output_size)))) | |
return output_size | |
class ModulatedDeformConvFunction(Function): | |
def forward( | |
ctx, | |
input, | |
offset, | |
mask, | |
weight, | |
bias=None, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1 | |
): | |
ctx.stride = stride | |
ctx.padding = padding | |
ctx.dilation = dilation | |
ctx.groups = groups | |
ctx.deformable_groups = deformable_groups | |
ctx.with_bias = bias is not None | |
if not ctx.with_bias: | |
bias = input.new_empty(1) # fake tensor | |
if not input.is_cuda: | |
raise NotImplementedError | |
if weight.requires_grad or mask.requires_grad or offset.requires_grad \ | |
or input.requires_grad: | |
ctx.save_for_backward(input, offset, mask, weight, bias) | |
output = input.new_empty( | |
ModulatedDeformConvFunction._infer_shape(ctx, input, weight)) | |
ctx._bufs = [input.new_empty(0), input.new_empty(0)] | |
_C.modulated_deform_conv_forward( | |
input, | |
weight, | |
bias, | |
ctx._bufs[0], | |
offset, | |
mask, | |
output, | |
ctx._bufs[1], | |
weight.shape[2], | |
weight.shape[3], | |
ctx.stride, | |
ctx.stride, | |
ctx.padding, | |
ctx.padding, | |
ctx.dilation, | |
ctx.dilation, | |
ctx.groups, | |
ctx.deformable_groups, | |
ctx.with_bias | |
) | |
return output | |
def backward(ctx, grad_output): | |
if not grad_output.is_cuda: | |
raise NotImplementedError | |
input, offset, mask, weight, bias = ctx.saved_tensors | |
grad_input = torch.zeros_like(input) | |
grad_offset = torch.zeros_like(offset) | |
grad_mask = torch.zeros_like(mask) | |
grad_weight = torch.zeros_like(weight) | |
grad_bias = torch.zeros_like(bias) | |
_C.modulated_deform_conv_backward( | |
input, | |
weight, | |
bias, | |
ctx._bufs[0], | |
offset, | |
mask, | |
ctx._bufs[1], | |
grad_input, | |
grad_weight, | |
grad_bias, | |
grad_offset, | |
grad_mask, | |
grad_output, | |
weight.shape[2], | |
weight.shape[3], | |
ctx.stride, | |
ctx.stride, | |
ctx.padding, | |
ctx.padding, | |
ctx.dilation, | |
ctx.dilation, | |
ctx.groups, | |
ctx.deformable_groups, | |
ctx.with_bias | |
) | |
if not ctx.with_bias: | |
grad_bias = None | |
return (grad_input, grad_offset, grad_mask, grad_weight, grad_bias, | |
None, None, None, None, None) | |
def _infer_shape(ctx, input, weight): | |
n = input.size(0) | |
channels_out = weight.size(0) | |
height, width = input.shape[2:4] | |
kernel_h, kernel_w = weight.shape[2:4] | |
height_out = (height + 2 * ctx.padding - | |
(ctx.dilation * (kernel_h - 1) + 1)) // ctx.stride + 1 | |
width_out = (width + 2 * ctx.padding - | |
(ctx.dilation * (kernel_w - 1) + 1)) // ctx.stride + 1 | |
return n, channels_out, height_out, width_out | |
deform_conv = DeformConvFunction.apply | |
modulated_deform_conv = ModulatedDeformConvFunction.apply | |
class DeformConv(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1, | |
bias=False | |
): | |
assert not bias | |
super(DeformConv, self).__init__() | |
self.with_bias = bias | |
assert in_channels % groups == 0, \ | |
'in_channels {} cannot be divisible by groups {}'.format( | |
in_channels, groups) | |
assert out_channels % groups == 0, \ | |
'out_channels {} cannot be divisible by groups {}'.format( | |
out_channels, groups) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = _pair(kernel_size) | |
self.stride = _pair(stride) | |
self.padding = _pair(padding) | |
self.dilation = _pair(dilation) | |
self.groups = groups | |
self.deformable_groups = deformable_groups | |
self.weight = nn.Parameter( | |
torch.Tensor(out_channels, in_channels // self.groups, | |
*self.kernel_size)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
n = self.in_channels | |
for k in self.kernel_size: | |
n *= k | |
stdv = 1. / math.sqrt(n) | |
self.weight.data.uniform_(-stdv, stdv) | |
def forward(self, input, offset): | |
return deform_conv(input, offset, self.weight, self.stride, | |
self.padding, self.dilation, self.groups, | |
self.deformable_groups) | |
def __repr__(self): | |
return "".join([ | |
"{}(".format(self.__class__.__name__), | |
"in_channels={}, ".format(self.in_channels), | |
"out_channels={}, ".format(self.out_channels), | |
"kernel_size={}, ".format(self.kernel_size), | |
"stride={}, ".format(self.stride), | |
"dilation={}, ".format(self.dilation), | |
"padding={}, ".format(self.padding), | |
"groups={}, ".format(self.groups), | |
"deformable_groups={}, ".format(self.deformable_groups), | |
"bias={})".format(self.with_bias), | |
]) | |
class ModulatedDeformConv(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1, | |
bias=True | |
): | |
super(ModulatedDeformConv, self).__init__() | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
self.kernel_size = _pair(kernel_size) | |
self.stride = stride | |
self.padding = padding | |
self.dilation = dilation | |
self.groups = groups | |
self.deformable_groups = deformable_groups | |
self.with_bias = bias | |
self.weight = nn.Parameter(torch.Tensor( | |
out_channels, | |
in_channels // groups, | |
*self.kernel_size | |
)) | |
if bias: | |
self.bias = nn.Parameter(torch.Tensor(out_channels)) | |
else: | |
self.register_parameter('bias', None) | |
self.reset_parameters() | |
def reset_parameters(self): | |
n = self.in_channels | |
for k in self.kernel_size: | |
n *= k | |
stdv = 1. / math.sqrt(n) | |
self.weight.data.uniform_(-stdv, stdv) | |
if self.bias is not None: | |
self.bias.data.zero_() | |
def forward(self, input, offset, mask): | |
return modulated_deform_conv( | |
input, offset, mask, self.weight, self.bias, self.stride, | |
self.padding, self.dilation, self.groups, self.deformable_groups) | |
def __repr__(self): | |
return "".join([ | |
"{}(".format(self.__class__.__name__), | |
"in_channels={}, ".format(self.in_channels), | |
"out_channels={}, ".format(self.out_channels), | |
"kernel_size={}, ".format(self.kernel_size), | |
"stride={}, ".format(self.stride), | |
"dilation={}, ".format(self.dilation), | |
"padding={}, ".format(self.padding), | |
"groups={}, ".format(self.groups), | |
"deformable_groups={}, ".format(self.deformable_groups), | |
"bias={})".format(self.with_bias), | |
]) | |
class ModulatedDeformConvPack(ModulatedDeformConv): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
deformable_groups=1, | |
bias=True): | |
super(ModulatedDeformConvPack, self).__init__( | |
in_channels, out_channels, kernel_size, stride, padding, dilation, | |
groups, deformable_groups, bias) | |
self.conv_offset_mask = nn.Conv2d( | |
self.in_channels // self.groups, | |
self.deformable_groups * 3 * self.kernel_size[0] * | |
self.kernel_size[1], | |
kernel_size=self.kernel_size, | |
stride=_pair(self.stride), | |
padding=_pair(self.padding), | |
bias=True) | |
self.init_offset() | |
def init_offset(self): | |
self.conv_offset_mask.weight.data.zero_() | |
self.conv_offset_mask.bias.data.zero_() | |
def forward(self, input): | |
out = self.conv_offset_mask(input) | |
o1, o2, mask = torch.chunk(out, 3, dim=1) | |
offset = torch.cat((o1, o2), dim=1) | |
mask = torch.sigmoid(mask) | |
return modulated_deform_conv( | |
input, offset, mask, self.weight, self.bias, self.stride, | |
self.padding, self.dilation, self.groups, self.deformable_groups) | |