Spaces:
Runtime error
Runtime error
from collections import OrderedDict | |
from torch import nn | |
from maskrcnn_benchmark.modeling import registry | |
from maskrcnn_benchmark.modeling.make_layers import conv_with_kaiming_uniform | |
from maskrcnn_benchmark.layers import DropBlock2D, DyHead | |
from . import fpn as fpn_module | |
from . import bifpn | |
from . import resnet | |
from . import efficientnet | |
from . import efficientdet | |
from . import swint | |
from . import swint_v2 | |
from . import swint_vl | |
from . import swint_v2_vl | |
def build_resnet_backbone(cfg): | |
body = resnet.ResNet(cfg) | |
model = nn.Sequential(OrderedDict([("body", body)])) | |
return model | |
def build_resnet_c5_backbone(cfg): | |
body = resnet.ResNet(cfg) | |
model = nn.Sequential(OrderedDict([("body", body)])) | |
return model | |
def build_retinanet_swint_fpn_backbone(cfg): | |
""" | |
Args: | |
cfg: a detectron2 CfgNode | |
Returns: | |
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. | |
""" | |
if cfg.MODEL.SWINT.VERSION == "v1": | |
body = swint.build_swint_backbone(cfg) | |
elif cfg.MODEL.SWINT.VERSION == "v2": | |
body = swint_v2.build_swint_backbone(cfg) | |
elif cfg.MODEL.SWINT.VERSION == "vl": | |
body = swint_vl.build_swint_backbone(cfg) | |
elif cfg.MODEL.SWINT.VERSION == "v2_vl": | |
body = swint_v2_vl.build_swint_backbone(cfg) | |
in_channels_stages = cfg.MODEL.SWINT.OUT_CHANNELS | |
out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
in_channels_p6p7 = out_channels | |
fpn = fpn_module.FPN( | |
in_channels_list=[ | |
0, | |
in_channels_stages[-3], | |
in_channels_stages[-2], | |
in_channels_stages[-1], | |
], | |
out_channels=out_channels, | |
conv_block=conv_with_kaiming_uniform( | |
cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU | |
), | |
top_blocks=fpn_module.LastLevelP6P7(in_channels_p6p7, out_channels), | |
drop_block=DropBlock2D(cfg.MODEL.FPN.DROP_PROB, cfg.MODEL.FPN.DROP_SIZE) if cfg.MODEL.FPN.DROP_BLOCK else None, | |
use_spp=cfg.MODEL.FPN.USE_SPP, | |
use_pan=cfg.MODEL.FPN.USE_PAN, | |
return_swint_feature_before_fusion=cfg.MODEL.FPN.RETURN_SWINT_FEATURE_BEFORE_FUSION | |
) | |
if cfg.MODEL.FPN.USE_DYHEAD: | |
dyhead = DyHead(cfg, out_channels) | |
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn), ("dyhead", dyhead)])) | |
else: | |
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) | |
return model | |
def build_swint_fpn_backbone(cfg): | |
""" | |
Args: | |
cfg: a detectron2 CfgNode | |
Returns: | |
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. | |
""" | |
if cfg.MODEL.SWINT.VERSION == "v1": | |
body = swint.build_swint_backbone(cfg) | |
elif cfg.MODEL.SWINT.VERSION == "v2": | |
body = swint_v2.build_swint_backbone(cfg) | |
elif cfg.MODEL.SWINT.VERSION == "vl": | |
body = swint_vl.build_swint_backbone(cfg) | |
elif cfg.MODEL.SWINT.VERSION == "v2_vl": | |
body = swint_v2_vl.build_swint_backbone(cfg) | |
in_channels_stages = cfg.MODEL.SWINT.OUT_CHANNELS | |
out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
fpn = fpn_module.FPN( | |
in_channels_list=[ | |
in_channels_stages[-4], | |
in_channels_stages[-3], | |
in_channels_stages[-2], | |
in_channels_stages[-1], | |
], | |
out_channels=out_channels, | |
conv_block=conv_with_kaiming_uniform( | |
cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU | |
), | |
top_blocks=fpn_module.LastLevelMaxPool(), | |
drop_block=DropBlock2D(cfg.MODEL.FPN.DROP_PROB, cfg.MODEL.FPN.DROP_SIZE) if cfg.MODEL.FPN.DROP_BLOCK else None, | |
use_spp=cfg.MODEL.FPN.USE_SPP, | |
use_pan=cfg.MODEL.FPN.USE_PAN | |
) | |
if cfg.MODEL.FPN.USE_DYHEAD: | |
dyhead = DyHead(cfg, out_channels) | |
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn), ("dyhead", dyhead)])) | |
else: | |
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) | |
return model | |
def build_retinanet_cvt_fpn_backbone(cfg): | |
""" | |
Args: | |
cfg: a detectron2 CfgNode | |
Returns: | |
backbone (Backbone): backbone module, must be a subclass of :class:`Backbone`. | |
""" | |
body = cvt.build_cvt_backbone(cfg) | |
in_channels_stages = cfg.MODEL.SPEC.DIM_EMBED | |
out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
in_channels_p6p7 = out_channels | |
fpn = fpn_module.FPN( | |
in_channels_list=[ | |
0, | |
in_channels_stages[-3], | |
in_channels_stages[-2], | |
in_channels_stages[-1], | |
], | |
out_channels=out_channels, | |
conv_block=conv_with_kaiming_uniform( | |
cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU | |
), | |
top_blocks=fpn_module.LastLevelP6P7(in_channels_p6p7, out_channels), | |
drop_block=DropBlock2D(cfg.MODEL.FPN.DROP_PROB, cfg.MODEL.FPN.DROP_SIZE) if cfg.MODEL.FPN.DROP_BLOCK else None, | |
use_spp=cfg.MODEL.FPN.USE_SPP, | |
use_pan=cfg.MODEL.FPN.USE_PAN | |
) | |
if cfg.MODEL.FPN.USE_DYHEAD: | |
dyhead = DyHead(cfg, out_channels) | |
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn), ("dyhead", dyhead)])) | |
else: | |
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) | |
return model | |
def build_eff_fpn_p6p7_backbone(cfg): | |
version = cfg.MODEL.BACKBONE.CONV_BODY.split('-')[0] | |
version = version.replace('EFFICIENT', 'b') | |
body = efficientnet.get_efficientnet(cfg, version) | |
in_channels_stage = body.out_channels | |
out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
in_channels_p6p7 = out_channels | |
in_channels_stage[0] = 0 | |
fpn = fpn_module.FPN( | |
in_channels_list=in_channels_stage, | |
out_channels=out_channels, | |
conv_block=conv_with_kaiming_uniform( | |
cfg.MODEL.FPN.USE_GN, cfg.MODEL.FPN.USE_RELU | |
), | |
top_blocks=fpn_module.LastLevelP6P7(in_channels_p6p7, out_channels), | |
drop_block=DropBlock2D(cfg.MODEL.FPN.DROP_PROB, cfg.MODEL.FPN.DROP_SIZE) if cfg.MODEL.FPN.DROP_BLOCK else None, | |
use_spp=cfg.MODEL.FPN.USE_SPP, | |
use_pan=cfg.MODEL.FPN.USE_PAN | |
) | |
model = nn.Sequential(OrderedDict([("body", body), ("fpn", fpn)])) | |
return model | |
def build_eff_fpn_p6p7_backbone(cfg): | |
version = cfg.MODEL.BACKBONE.CONV_BODY.split('-')[0] | |
version = version.replace('EFFICIENT', 'b') | |
body = efficientnet.get_efficientnet(cfg, version) | |
in_channels_stage = body.out_channels | |
out_channels = cfg.MODEL.BACKBONE.OUT_CHANNELS | |
bifpns = nn.ModuleList() | |
for i in range(cfg.MODEL.BIFPN.NUM_REPEATS): | |
first_time = (i==0) | |
fpn = bifpn.BiFPN( | |
in_channels_list=in_channels_stage[1:], | |
out_channels=out_channels, | |
first_time=first_time, | |
attention=cfg.MODEL.BIFPN.USE_ATTENTION | |
) | |
bifpns.append(fpn) | |
model = nn.Sequential(OrderedDict([("body", body), ("bifpn", bifpns)])) | |
return model | |
def build_efficientdet_backbone(cfg): | |
efficientdet.g_simple_padding = True | |
compound = cfg.MODEL.BACKBONE.EFFICIENT_DET_COMPOUND | |
start_from = cfg.MODEL.BACKBONE.EFFICIENT_DET_START_FROM | |
model = efficientdet.EffNetFPN( | |
compound_coef=compound, | |
start_from=start_from, | |
) | |
if cfg.MODEL.BACKBONE.USE_SYNCBN: | |
import torch | |
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) | |
return model | |
def build_backbone(cfg): | |
assert cfg.MODEL.BACKBONE.CONV_BODY in registry.BACKBONES, \ | |
"cfg.MODEL.BACKBONE.CONV_BODY: {} are not registered in registry".format( | |
cfg.MODEL.BACKBONE.CONV_BODY | |
) | |
return registry.BACKBONES[cfg.MODEL.BACKBONE.CONV_BODY](cfg) | |