Spaces:
Runtime error
Runtime error
GLIP-BLIP-Object-Detection-VQA
/
maskrcnn_benchmark
/modeling
/language_backbone
/simple_tokenizer.py
import gzip | |
import html | |
import os | |
from functools import lru_cache | |
import ftfy | |
import regex as re | |
from typing import Union, List | |
import torch | |
def default_bpe(): | |
return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") | |
def bytes_to_unicode(): | |
""" | |
Returns list of utf-8 byte and a corresponding list of unicode strings. | |
The reversible bpe codes work on unicode strings. | |
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. | |
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. | |
This is a significant percentage of your normal, say, 32K bpe vocab. | |
To avoid that, we want lookup tables between utf-8 bytes and unicode strings. | |
And avoids mapping to whitespace/control characters the bpe code barfs on. | |
""" | |
bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) | |
cs = bs[:] | |
n = 0 | |
for b in range(2 ** 8): | |
if b not in bs: | |
bs.append(b) | |
cs.append(2 ** 8 + n) | |
n += 1 | |
cs = [chr(n) for n in cs] | |
return dict(zip(bs, cs)) | |
def get_pairs(word): | |
"""Return set of symbol pairs in a word. | |
Word is represented as tuple of symbols (symbols being variable-length strings). | |
""" | |
pairs = set() | |
prev_char = word[0] | |
for char in word[1:]: | |
pairs.add((prev_char, char)) | |
prev_char = char | |
return pairs | |
def basic_clean(text): | |
text = ftfy.fix_text(text) | |
text = html.unescape(html.unescape(text)) | |
return text.strip() | |
def whitespace_clean(text): | |
text = re.sub(r'\s+', ' ', text) | |
text = text.strip() | |
return text | |
class SimpleTokenizer(object): | |
def __init__(self, bpe_path: str = default_bpe()): | |
self.byte_encoder = bytes_to_unicode() | |
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} | |
merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') | |
merges = merges[1:49152 - 256 - 2 + 1] | |
merges = [tuple(merge.split()) for merge in merges] | |
vocab = list(bytes_to_unicode().values()) | |
vocab = vocab + [v + '</w>' for v in vocab] | |
for merge in merges: | |
vocab.append(''.join(merge)) | |
vocab.extend(['<|startoftext|>', '<|endoftext|>']) | |
self.encoder = dict(zip(vocab, range(len(vocab)))) | |
self.decoder = {v: k for k, v in self.encoder.items()} | |
self.bpe_ranks = dict(zip(merges, range(len(merges)))) | |
self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} | |
self.pat = re.compile( | |
r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", | |
re.IGNORECASE) | |
def bpe(self, token): | |
if token in self.cache: | |
return self.cache[token] | |
word = tuple(token[:-1]) + (token[-1] + '</w>',) | |
pairs = get_pairs(word) | |
if not pairs: | |
return token + '</w>' | |
while True: | |
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) | |
if bigram not in self.bpe_ranks: | |
break | |
first, second = bigram | |
new_word = [] | |
i = 0 | |
while i < len(word): | |
try: | |
j = word.index(first, i) | |
new_word.extend(word[i:j]) | |
i = j | |
except: | |
new_word.extend(word[i:]) | |
break | |
if word[i] == first and i < len(word) - 1 and word[i + 1] == second: | |
new_word.append(first + second) | |
i += 2 | |
else: | |
new_word.append(word[i]) | |
i += 1 | |
new_word = tuple(new_word) | |
word = new_word | |
if len(word) == 1: | |
break | |
else: | |
pairs = get_pairs(word) | |
word = ' '.join(word) | |
self.cache[token] = word | |
return word | |
def encode(self, text): | |
bpe_tokens = [] | |
text = whitespace_clean(basic_clean(text)).lower() | |
for token in re.findall(self.pat, text): | |
token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) | |
bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) | |
return bpe_tokens | |
def decode(self, tokens): | |
text = ''.join([self.decoder[token] for token in tokens]) | |
text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') | |
return text | |
def get_vocab_size(self): | |
return 49408 | |
def get_eot_token(self): | |
return self.encoder["<|endoftext|>"] | |
def get_sot_token(self): | |
return self.encoder["<|startoftext|>"] | |
def check_added_tokens(self): | |
return 0 | |
def get_tokenizer_obj(self): | |
return None | |
def tokenize(self, texts: Union[str, List[str]], context_length: int = 77): | |
if isinstance(texts, str): | |
texts = [texts] | |
sot_token = self.encoder["<|startoftext|>"] | |
eot_token = self.encoder["<|endoftext|>"] | |
all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts] | |
result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) | |
for i, tokens in enumerate(all_tokens): | |
if len(tokens) > context_length: | |
tokens = tokens[:context_length] | |
# raise RuntimeError(f"Input {texts[i]} is too long for context length {context_length}") | |
result[i, :len(tokens)] = torch.tensor(tokens) | |
return result | |
def __call__(self, texts: Union[str, List[str]], context_length: int = 77): | |
return self.tokenize(texts, context_length) | |