Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
import torch | |
from torch import nn | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from torch.nn.modules.utils import _pair | |
from maskrcnn_benchmark import _C | |
class _ROIAlign(Function): | |
def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio): | |
ctx.save_for_backward(roi) | |
ctx.output_size = _pair(output_size) | |
ctx.spatial_scale = spatial_scale | |
ctx.sampling_ratio = sampling_ratio | |
ctx.input_shape = input.size() | |
output = _C.roi_align_forward( | |
input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio | |
) | |
return output | |
def backward(ctx, grad_output): | |
rois, = ctx.saved_tensors | |
output_size = ctx.output_size | |
spatial_scale = ctx.spatial_scale | |
sampling_ratio = ctx.sampling_ratio | |
bs, ch, h, w = ctx.input_shape | |
grad_input = _C.roi_align_backward( | |
grad_output, | |
rois, | |
spatial_scale, | |
output_size[0], | |
output_size[1], | |
bs, | |
ch, | |
h, | |
w, | |
sampling_ratio, | |
) | |
return grad_input, None, None, None, None | |
try: | |
import torchvision | |
from torchvision.ops import roi_align | |
except: | |
roi_align = _ROIAlign.apply | |
class ROIAlign(nn.Module): | |
def __init__(self, output_size, spatial_scale, sampling_ratio): | |
super(ROIAlign, self).__init__() | |
self.output_size = output_size | |
self.spatial_scale = spatial_scale | |
self.sampling_ratio = sampling_ratio | |
def forward(self, input, rois): | |
return roi_align( | |
input, rois, self.output_size, self.spatial_scale, self.sampling_ratio | |
) | |
def __repr__(self): | |
tmpstr = self.__class__.__name__ + "(" | |
tmpstr += "output_size=" + str(self.output_size) | |
tmpstr += ", spatial_scale=" + str(self.spatial_scale) | |
tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) | |
tmpstr += ")" | |
return tmpstr | |
class ROIAlignV2(nn.Module): | |
def __init__(self, output_size, spatial_scale, sampling_ratio): | |
super(ROIAlignV2, self).__init__() | |
self.output_size = output_size | |
self.spatial_scale = spatial_scale | |
self.sampling_ratio = sampling_ratio | |
def forward(self, input, rois): | |
return torchvision.ops.roi_align( | |
input, rois, self.output_size, self.spatial_scale, self.sampling_ratio, aligned=True | |
) | |
def __repr__(self): | |
tmpstr = self.__class__.__name__ + "(" | |
tmpstr += "output_size=" + str(self.output_size) | |
tmpstr += ", spatial_scale=" + str(self.spatial_scale) | |
tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) | |
tmpstr += ")" | |
return tmpstr | |