Pinwheel's picture
HF Demo
128757a
raw
history blame
7.56 kB
import torch
from maskrcnn_benchmark.config import cfg
# transpose
FLIP_LEFT_RIGHT = 0
FLIP_TOP_BOTTOM = 1
class Keypoints(object):
def __init__(self, keypoints, size, mode=None):
# FIXME remove check once we have better integration with device
# in my version this would consistently return a CPU tensor
device = keypoints.device if isinstance(keypoints, torch.Tensor) else torch.device('cpu')
keypoints = torch.as_tensor(keypoints, dtype=torch.float32, device=device)
num_keypoints = keypoints.shape[0]
if num_keypoints:
keypoints = keypoints.view(num_keypoints, -1, 3)
# TODO should I split them?
# self.visibility = keypoints[..., 2]
self.keypoints = keypoints # [..., :2]
self.size = size
self.mode = mode
self.extra_fields = {}
def crop(self, box):
raise NotImplementedError()
def resize(self, size, *args, **kwargs):
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size))
ratio_w, ratio_h = ratios
resized_data = self.keypoints.clone()
resized_data[..., 0] *= ratio_w
resized_data[..., 1] *= ratio_h
keypoints = type(self)(resized_data, size, self.mode)
for k, v in self.extra_fields.items():
keypoints.add_field(k, v)
return keypoints
def transpose(self, method):
if method not in (FLIP_LEFT_RIGHT,):
raise NotImplementedError(
"Only FLIP_LEFT_RIGHT implemented")
flip_inds = self.FLIP_INDS
flipped_data = self.keypoints[:, flip_inds]
width = self.size[0]
TO_REMOVE = 1
# Flip x coordinates
flipped_data[..., 0] = width - flipped_data[..., 0] - TO_REMOVE
# Maintain COCO convention that if visibility == 0, then x, y = 0
inds = flipped_data[..., 2] == 0
flipped_data[inds] = 0
keypoints = type(self)(flipped_data, self.size, self.mode)
for k, v in self.extra_fields.items():
keypoints.add_field(k, v)
return keypoints
def to(self, *args, **kwargs):
keypoints = type(self)(self.keypoints.to(*args, **kwargs), self.size, self.mode)
for k, v in self.extra_fields.items():
if hasattr(v, "to"):
v = v.to(*args, **kwargs)
keypoints.add_field(k, v)
return keypoints
def __getitem__(self, item):
keypoints = type(self)(self.keypoints[item], self.size, self.mode)
for k, v in self.extra_fields.items():
keypoints.add_field(k, v[item])
return keypoints
def add_field(self, field, field_data):
self.extra_fields[field] = field_data
def get_field(self, field):
return self.extra_fields[field]
def __repr__(self):
s = self.__class__.__name__ + '('
s += 'num_instances={}, '.format(len(self.keypoints))
s += 'image_width={}, '.format(self.size[0])
s += 'image_height={})'.format(self.size[1])
return s
class PersonKeypoints(Keypoints):
_NAMES = [
'nose',
'left_eye',
'right_eye',
'left_ear',
'right_ear',
'left_shoulder',
'right_shoulder',
'left_elbow',
'right_elbow',
'left_wrist',
'right_wrist',
'left_hip',
'right_hip',
'left_knee',
'right_knee',
'left_ankle',
'right_ankle'
]
_FLIP_MAP = {
'left_eye': 'right_eye',
'left_ear': 'right_ear',
'left_shoulder': 'right_shoulder',
'left_elbow': 'right_elbow',
'left_wrist': 'right_wrist',
'left_hip': 'right_hip',
'left_knee': 'right_knee',
'left_ankle': 'right_ankle'
}
def __init__(self, *args, **kwargs):
super(PersonKeypoints, self).__init__(*args, **kwargs)
if len(cfg.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME)>0:
self.NAMES = cfg.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME
self.FLIP_MAP = {l:r for l,r in PersonKeypoints._FLIP_MAP.items() if l in cfg.MODEL.ROI_KEYPOINT_HEAD.KEYPOINT_NAME}
else:
self.NAMES = PersonKeypoints._NAMES
self.FLIP_MAP = PersonKeypoints._FLIP_MAP
self.FLIP_INDS = self._create_flip_indices(self.NAMES, self.FLIP_MAP)
self.CONNECTIONS = self._kp_connections(self.NAMES)
def to_coco_format(self):
coco_result = []
for i in range(self.keypoints.shape[0]):
coco_kps = [0]*len(PersonKeypoints._NAMES)*3
for ki, name in enumerate(self.NAMES):
coco_kps[3*PersonKeypoints._NAMES.index(name)] = self.keypoints[i,ki,0].item()
coco_kps[3*PersonKeypoints._NAMES.index(name)+1] = self.keypoints[i,ki,1].item()
coco_kps[3*PersonKeypoints._NAMES.index(name)+2] = self.keypoints[i,ki,2].item()
coco_result.append(coco_kps)
return coco_result
def _create_flip_indices(self, names, flip_map):
full_flip_map = flip_map.copy()
full_flip_map.update({v: k for k, v in flip_map.items()})
flipped_names = [i if i not in full_flip_map else full_flip_map[i] for i in names]
flip_indices = [names.index(i) for i in flipped_names]
return torch.tensor(flip_indices)
def _kp_connections(self, keypoints):
CONNECTIONS = [
['left_eye', 'right_eye'],
['left_eye', 'nose'],
['right_eye', 'nose'],
['right_eye', 'right_ear'],
['left_eye', 'left_ear'],
['right_shoulder', 'right_elbow'],
['right_elbow', 'right_wrist'],
['left_shoulder', 'left_elbow'],
['left_elbow', 'left_wrist'],
['right_hip', 'right_knee'],
['right_knee', 'right_ankle'],
['left_hip', 'left_knee'],
['left_knee', 'left_ankle'],
['right_shoulder', 'left_shoulder'],
['right_hip', 'left_hip'],
]
kp_lines = [[keypoints.index(conn[0]), keypoints.index(conn[1])] for conn in CONNECTIONS
if conn[0] in self.NAMES and conn[1] in self.NAMES]
return kp_lines
# TODO make this nicer, this is a direct translation from C2 (but removing the inner loop)
def keypoints_to_heat_map(keypoints, rois, heatmap_size):
if rois.numel() == 0:
return rois.new().long(), rois.new().long()
offset_x = rois[:, 0]
offset_y = rois[:, 1]
scale_x = heatmap_size / (rois[:, 2] - rois[:, 0])
scale_y = heatmap_size / (rois[:, 3] - rois[:, 1])
offset_x = offset_x[:, None]
offset_y = offset_y[:, None]
scale_x = scale_x[:, None]
scale_y = scale_y[:, None]
x = keypoints[..., 0]
y = keypoints[..., 1]
x_boundary_inds = x == rois[:, 2][:, None]
y_boundary_inds = y == rois[:, 3][:, None]
x = (x - offset_x) * scale_x
x = x.floor().long()
y = (y - offset_y) * scale_y
y = y.floor().long()
x[x_boundary_inds] = heatmap_size - 1
y[y_boundary_inds] = heatmap_size - 1
valid_loc = (x >= 0) & (y >= 0) & (x < heatmap_size) & (y < heatmap_size)
vis = keypoints[..., 2] > 0
valid = (valid_loc & vis).long()
lin_ind = y * heatmap_size + x
heatmaps = lin_ind * valid
return heatmaps, valid