Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import pdb | |
import math | |
from maskrcnn_benchmark.modeling.utils import cat, concat_box_prediction_layers, permute_and_flatten | |
from timm.models.layers import DropPath | |
from transformers.activations import ACT2FN | |
class BertPredictionHeadTransform(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.dense = nn.Linear(config.hidden_size, config.hidden_size) | |
if isinstance(config.hidden_act, str): | |
self.transform_act_fn = ACT2FN[config.hidden_act] | |
else: | |
self.transform_act_fn = config.hidden_act | |
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) | |
def forward(self, hidden_states): | |
hidden_states = self.dense(hidden_states) | |
hidden_states = self.transform_act_fn(hidden_states) | |
hidden_states = self.LayerNorm(hidden_states) | |
return hidden_states | |
class BertLMPredictionHead(nn.Module): | |
def __init__(self, config): | |
super().__init__() | |
self.transform = BertPredictionHeadTransform(config) | |
# The output weights are the same as the input embeddings, but there is | |
# an output-only bias for each token. | |
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | |
self.bias = nn.Parameter(torch.zeros(config.vocab_size)) | |
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` | |
self.decoder.bias = self.bias | |
def forward(self, hidden_states): | |
hidden_states = self.transform(hidden_states) | |
hidden_states = self.decoder(hidden_states) | |
return hidden_states | |
class FeatureResizer(nn.Module): | |
""" | |
This class takes as input a set of embeddings of dimension C1 and outputs a set of | |
embedding of dimension C2, after a linear transformation, dropout and normalization (LN). | |
""" | |
def __init__(self, input_feat_size, output_feat_size, dropout, do_ln=True): | |
super().__init__() | |
self.do_ln = do_ln | |
# Object feature encoding | |
self.fc = nn.Linear(input_feat_size, output_feat_size, bias=True) | |
self.layer_norm = nn.LayerNorm(output_feat_size, eps=1e-12) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, encoder_features): | |
x = self.fc(encoder_features) | |
if self.do_ln: | |
x = self.layer_norm(x) | |
output = self.dropout(x) | |
return output | |
def _make_conv(input_dim, output_dim, k, stride=1): | |
pad = (k - 1) // 2 | |
return nn.Sequential( | |
nn.Conv2d(input_dim, output_dim, (k, k), padding=(pad, pad), stride=(stride, stride)), | |
nn.BatchNorm2d(output_dim), | |
nn.ReLU(inplace=True) | |
) | |
def _make_mlp(input_dim, output_dim, drop): | |
return nn.Sequential(nn.Linear(input_dim, output_dim), | |
nn.BatchNorm1d(output_dim), | |
nn.ReLU(inplace=True), | |
nn.Dropout(drop), | |
nn.Linear(output_dim, output_dim), | |
nn.BatchNorm1d(output_dim), | |
nn.ReLU(inplace=True)) | |
def _make_coord(batch, height, width): | |
# relative position encoding | |
xv, yv = torch.meshgrid([torch.arange(0, height), torch.arange(0, width)]) | |
xv_min = (xv.float() * 2 - width) / width | |
yv_min = (yv.float() * 2 - height) / height | |
xv_max = ((xv + 1).float() * 2 - width) / width | |
yv_max = ((yv + 1).float() * 2 - height) / height | |
xv_ctr = (xv_min + xv_max) / 2 | |
yv_ctr = (yv_min + yv_max) / 2 | |
hmap = torch.ones(height, width) * (1. / height) | |
wmap = torch.ones(height, width) * (1. / width) | |
coord = torch.autograd.Variable(torch.cat([xv_min.unsqueeze(0), yv_min.unsqueeze(0), \ | |
xv_max.unsqueeze(0), yv_max.unsqueeze(0), \ | |
xv_ctr.unsqueeze(0), yv_ctr.unsqueeze(0), \ | |
hmap.unsqueeze(0), wmap.unsqueeze(0)], dim=0)) | |
coord = coord.unsqueeze(0).repeat(batch, 1, 1, 1) | |
return coord | |
def l1norm(X, dim, eps=1e-8): | |
"""L1-normalize columns of X | |
""" | |
norm = torch.abs(X).sum(dim=dim, keepdim=True) + eps | |
X = torch.div(X, norm) | |
return X | |
def l2norm(X, dim, eps=1e-8): | |
"""L2-normalize columns of X | |
""" | |
norm = torch.pow(X, 2).sum(dim=dim, keepdim=True).sqrt() + eps | |
X = torch.div(X, norm) | |
return X | |
def func_attention(query, context, smooth=1, raw_feature_norm="softmax", eps=1e-8): | |
""" | |
query: (n_context, queryL, d) | |
context: (n_context, sourceL, d) | |
""" | |
batch_size_q, queryL = query.size(0), query.size(1) | |
batch_size, sourceL = context.size(0), context.size(1) | |
# Get attention | |
# --> (batch, d, queryL) | |
queryT = torch.transpose(query, 1, 2) | |
# (batch, sourceL, d)(batch, d, queryL) | |
# --> (batch, sourceL, queryL) | |
attn = torch.bmm(context, queryT) | |
if raw_feature_norm == "softmax": | |
# --> (batch*sourceL, queryL) | |
attn = attn.view(batch_size * sourceL, queryL) | |
attn = nn.Softmax()(attn) | |
# --> (batch, sourceL, queryL) | |
attn = attn.view(batch_size, sourceL, queryL) | |
elif raw_feature_norm == "l2norm": | |
attn = l2norm(attn, 2) | |
elif raw_feature_norm == "clipped_l2norm": | |
attn = nn.LeakyReLU(0.1)(attn) | |
attn = l2norm(attn, 2) | |
else: | |
raise ValueError("unknown first norm type:", raw_feature_norm) | |
# --> (batch, queryL, sourceL) | |
attn = torch.transpose(attn, 1, 2).contiguous() | |
# --> (batch*queryL, sourceL) | |
attn = attn.view(batch_size * queryL, sourceL) | |
attn = nn.Softmax()(attn * smooth) | |
# --> (batch, queryL, sourceL) | |
attn = attn.view(batch_size, queryL, sourceL) | |
# --> (batch, sourceL, queryL) | |
attnT = torch.transpose(attn, 1, 2).contiguous() | |
# --> (batch, d, sourceL) | |
contextT = torch.transpose(context, 1, 2) | |
# (batch x d x sourceL)(batch x sourceL x queryL) | |
# --> (batch, d, queryL) | |
weightedContext = torch.bmm(contextT, attnT) | |
# --> (batch, queryL, d) | |
weightedContext = torch.transpose(weightedContext, 1, 2) | |
return weightedContext, attnT | |
class BiMultiHeadAttention(nn.Module): | |
def __init__(self, v_dim, l_dim, embed_dim, num_heads, dropout=0.1, cfg=None): | |
super(BiMultiHeadAttention, self).__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.head_dim = embed_dim // num_heads | |
self.v_dim = v_dim | |
self.l_dim = l_dim | |
assert ( | |
self.head_dim * self.num_heads == self.embed_dim | |
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." | |
self.scale = self.head_dim ** (-0.5) | |
self.dropout = dropout | |
self.v_proj = nn.Linear(self.v_dim, self.embed_dim) | |
self.l_proj = nn.Linear(self.l_dim, self.embed_dim) | |
self.values_v_proj = nn.Linear(self.v_dim, self.embed_dim) | |
self.values_l_proj = nn.Linear(self.l_dim, self.embed_dim) | |
self.out_v_proj = nn.Linear(self.embed_dim, self.v_dim) | |
self.out_l_proj = nn.Linear(self.embed_dim, self.l_dim) | |
self.stable_softmax_2d = cfg.MODEL.DYHEAD.FUSE_CONFIG.STABLE_SOFTMAX_2D | |
self.clamp_min_for_underflow = cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_MIN_FOR_UNDERFLOW | |
self.clamp_max_for_overflow = cfg.MODEL.DYHEAD.FUSE_CONFIG.CLAMP_MAX_FOR_OVERFLOW | |
self._reset_parameters() | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def _reset_parameters(self): | |
nn.init.xavier_uniform_(self.v_proj.weight) | |
self.v_proj.bias.data.fill_(0) | |
nn.init.xavier_uniform_(self.l_proj.weight) | |
self.l_proj.bias.data.fill_(0) | |
nn.init.xavier_uniform_(self.values_v_proj.weight) | |
self.values_v_proj.bias.data.fill_(0) | |
nn.init.xavier_uniform_(self.values_l_proj.weight) | |
self.values_l_proj.bias.data.fill_(0) | |
nn.init.xavier_uniform_(self.out_v_proj.weight) | |
self.out_v_proj.bias.data.fill_(0) | |
nn.init.xavier_uniform_(self.out_l_proj.weight) | |
self.out_l_proj.bias.data.fill_(0) | |
def forward(self, v, l, attention_mask_l=None): | |
bsz, tgt_len, embed_dim = v.size() | |
query_states = self.v_proj(v) * self.scale | |
key_states = self._shape(self.l_proj(l), -1, bsz) | |
value_v_states = self._shape(self.values_v_proj(v), -1, bsz) | |
value_l_states = self._shape(self.values_l_proj(l), -1, bsz) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_v_states = value_v_states.view(*proj_shape) | |
value_l_states = value_l_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" | |
) | |
# attn_weights_l = nn.functional.softmax(attn_weights.transpose(1, 2), dim=-1) | |
if self.stable_softmax_2d: | |
attn_weights = attn_weights - attn_weights.max() | |
if self.clamp_min_for_underflow: | |
attn_weights = torch.clamp(attn_weights, min=-50000) # Do not increase -50000, data type half has quite limited range | |
if self.clamp_max_for_overflow: | |
attn_weights = torch.clamp(attn_weights, max=50000) # Do not increase 50000, data type half has quite limited range | |
attn_weights_T = attn_weights.transpose(1, 2) | |
attn_weights_l = (attn_weights_T - torch.max(attn_weights_T, dim=-1, keepdim=True)[ | |
0]) | |
if self.clamp_min_for_underflow: | |
attn_weights_l = torch.clamp(attn_weights_l, min=-50000) # Do not increase -50000, data type half has quite limited range | |
if self.clamp_max_for_overflow: | |
attn_weights_l = torch.clamp(attn_weights_l, max=50000) # Do not increase 50000, data type half has quite limited range | |
attn_weights_l = attn_weights_l.softmax(dim=-1) | |
if attention_mask_l is not None: | |
assert (attention_mask_l.dim() == 2) | |
attention_mask = attention_mask_l.unsqueeze(1).unsqueeze(1) | |
attention_mask = attention_mask.expand(bsz, 1, tgt_len, src_len) | |
attention_mask = attention_mask.masked_fill(attention_mask == 0, -9e15) | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights_v = nn.functional.softmax(attn_weights, dim=-1) | |
attn_probs_v = F.dropout(attn_weights_v, p=self.dropout, training=self.training) | |
attn_probs_l = F.dropout(attn_weights_l, p=self.dropout, training=self.training) | |
attn_output_v = torch.bmm(attn_probs_v, value_l_states) | |
attn_output_l = torch.bmm(attn_probs_l, value_v_states) | |
if attn_output_v.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output_v` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output_v.size()}" | |
) | |
if attn_output_l.size() != (bsz * self.num_heads, src_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output_l` should be of size {(bsz, self.num_heads, src_len, self.head_dim)}, but is {attn_output_l.size()}" | |
) | |
attn_output_v = attn_output_v.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output_v = attn_output_v.transpose(1, 2) | |
attn_output_v = attn_output_v.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output_l = attn_output_l.view(bsz, self.num_heads, src_len, self.head_dim) | |
attn_output_l = attn_output_l.transpose(1, 2) | |
attn_output_l = attn_output_l.reshape(bsz, src_len, self.embed_dim) | |
attn_output_v = self.out_v_proj(attn_output_v) | |
attn_output_l = self.out_l_proj(attn_output_l) | |
return attn_output_v, attn_output_l | |
# Bi-Direction MHA (text->image, image->text) | |
class BiAttentionBlock(nn.Module): | |
def __init__(self, v_dim, l_dim, embed_dim, num_heads, hidden_dim=None, dropout=0.1, | |
drop_path=.0, init_values=1e-4, cfg=None): | |
""" | |
Inputs: | |
embed_dim - Dimensionality of input and attention feature vectors | |
hidden_dim - Dimensionality of hidden layer in feed-forward network | |
(usually 2-4x larger than embed_dim) | |
num_heads - Number of heads to use in the Multi-Head Attention block | |
dropout - Amount of dropout to apply in the feed-forward network | |
""" | |
super(BiAttentionBlock, self).__init__() | |
# pre layer norm | |
self.layer_norm_v = nn.LayerNorm(v_dim) | |
self.layer_norm_l = nn.LayerNorm(l_dim) | |
self.attn = BiMultiHeadAttention(v_dim=v_dim, | |
l_dim=l_dim, | |
embed_dim=embed_dim, | |
num_heads=num_heads, | |
dropout=dropout, | |
cfg=cfg) | |
# add layer scale for training stability | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True) | |
self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True) | |
def forward(self, v, l, attention_mask_l=None, dummy_tensor=None): | |
v = self.layer_norm_v(v) | |
l = self.layer_norm_l(l) | |
delta_v, delta_l = self.attn(v, l, attention_mask_l=attention_mask_l) | |
# v, l = v + delta_v, l + delta_l | |
v = v + self.drop_path(self.gamma_v * delta_v) | |
l = l + self.drop_path(self.gamma_l * delta_l) | |
return v, l | |
class BiAttentionBlockForCheckpoint(nn.Module): | |
def __init__(self, v_dim, l_dim, embed_dim, num_heads, hidden_dim=None, dropout=0.1, | |
drop_path=.0, init_values=1e-4, cfg=None): | |
""" | |
Inputs: | |
embed_dim - Dimensionality of input and attention feature vectors | |
hidden_dim - Dimensionality of hidden layer in feed-forward network | |
(usually 2-4x larger than embed_dim) | |
num_heads - Number of heads to use in the Multi-Head Attention block | |
dropout - Amount of dropout to apply in the feed-forward network | |
""" | |
super(BiAttentionBlockForCheckpoint, self).__init__() | |
# pre layer norm | |
self.layer_norm_v = nn.LayerNorm(v_dim) | |
self.layer_norm_l = nn.LayerNorm(l_dim) | |
self.attn = BiMultiHeadAttention(v_dim=v_dim, | |
l_dim=l_dim, | |
embed_dim=embed_dim, | |
num_heads=num_heads, | |
dropout=dropout, | |
cfg=cfg) | |
# add layer scale for training stability | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.gamma_v = nn.Parameter(init_values * torch.ones((v_dim)), requires_grad=True) | |
self.gamma_l = nn.Parameter(init_values * torch.ones((l_dim)), requires_grad=True) | |
self.cfg = cfg | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SEPARATE_BIDIRECTIONAL: | |
if not self.cfg.MODEL.DYHEAD.FUSE_CONFIG.DO_LANG_PROJ_OUTSIDE_CHECKPOINT: | |
self.shrink_lang = FeatureResizer(l_dim * 5, l_dim, 0.1) | |
def forward(self, q0, q1, q2, q3, q4, l, attention_mask_l=None, dummy_tensor=None): | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.SEPARATE_BIDIRECTIONAL: | |
visu_feat = [] | |
lang_feat = [] | |
for ii, feat in enumerate([q0, q1, q2, q3, q4]): | |
bs, _, h, w = feat.shape | |
q = feat.flatten(2).transpose(1, 2) | |
new_v, new_l = self.single_attention_call(q, l, attention_mask_l=attention_mask_l) | |
new_v = new_v.transpose(1, 2).contiguous().view(bs, -1, h, w) | |
lang_feat.append(new_l) | |
visu_feat.append(new_v) | |
if self.cfg.MODEL.DYHEAD.FUSE_CONFIG.DO_LANG_PROJ_OUTSIDE_CHECKPOINT: | |
pass | |
else: | |
lang_feat = self.shrink_lang(torch.cat(lang_feat, dim = -1)) # From multiple dimensions | |
lang_feat = [lang_feat, None, None, None, None] | |
else: | |
visu_feat = [] | |
size_per_level, visual_features_flatten = [], [] | |
for ii, feat_per_level in enumerate([q0, q1, q2, q3, q4]): | |
bs, c, h, w = feat_per_level.shape | |
size_per_level.append([h, w]) | |
feat = permute_and_flatten(feat_per_level, bs, 1, c, h, w) | |
visual_features_flatten.append(feat) | |
visual_features_flatten = cat(visual_features_flatten, dim=1) | |
new_v, new_l = self.single_attention_call(visual_features_flatten, l, attention_mask_l=attention_mask_l) | |
# [bs, N, C] -> [bs, C, N] | |
new_v = new_v.transpose(1, 2).contiguous() | |
start = 0 | |
for (h, w) in size_per_level: | |
new_v_per_level = new_v[:, :, start:start + h * w].view(bs, -1, h, w).contiguous() | |
visu_feat.append(new_v_per_level) | |
start += h * w | |
lang_feat = [new_l, None, None, None, None] | |
return visu_feat[0], visu_feat[1], visu_feat[2], visu_feat[3], visu_feat[4], lang_feat[0], lang_feat[1], lang_feat[2], lang_feat[3], lang_feat[4] | |
def single_attention_call(self, v, l, attention_mask_l=None, dummy_tensor=None): | |
v = self.layer_norm_v(v) | |
l = self.layer_norm_l(l) | |
delta_v, delta_l = self.attn(v, l, attention_mask_l=attention_mask_l) | |
# v, l = v + delta_v, l + delta_l | |
v = v + self.drop_path(self.gamma_v * delta_v) | |
l = l + self.drop_path(self.gamma_l * delta_l) | |
return v, l | |
# Single Direction MHA | |
class MultiHeadAttention(nn.Module): | |
""" | |
Multi-head attention module for both image and text | |
""" | |
def __init__(self, q_dim, k_dim, embed_dim, num_heads, dropout=0.1, | |
clamp_min_for_underflow = False, clamp_max_for_overflow = False): | |
super(MultiHeadAttention, self).__init__() | |
self.embed_dim = embed_dim | |
self.num_heads = num_heads | |
self.head_dim = embed_dim // num_heads | |
self.q_dim = q_dim | |
self.k_dim = k_dim | |
assert ( | |
self.head_dim * self.num_heads == self.embed_dim | |
), f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`: {self.num_heads})." | |
self.scale = self.head_dim ** (-0.5) | |
self.dropout = dropout | |
self.q_proj = nn.Linear(self.q_dim, self.embed_dim) | |
self.k_proj = nn.Linear(self.k_dim, self.embed_dim) | |
self.v_proj = nn.Linear(self.k_dim, self.embed_dim) | |
self.out_proj = nn.Linear(self.embed_dim, self.q_dim) | |
self.clamp_min_for_underflow = clamp_min_for_underflow | |
self.clamp_max_for_overflow = clamp_max_for_overflow | |
self._reset_parameters() | |
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | |
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() | |
def _reset_parameters(self): | |
nn.init.xavier_uniform_(self.q_proj.weight) | |
self.q_proj.bias.data.fill_(0) | |
nn.init.xavier_uniform_(self.k_proj.weight) | |
self.k_proj.bias.data.fill_(0) | |
nn.init.xavier_uniform_(self.v_proj.weight) | |
self.v_proj.bias.data.fill_(0) | |
nn.init.xavier_uniform_(self.out_proj.weight) | |
self.out_proj.bias.data.fill_(0) | |
def forward(self, q, k, v, attention_mask=None, return_attention=False): | |
bsz, tgt_len, embed_dim = q.size() | |
query_states = self.q_proj(q) * self.scale | |
key_states = self._shape(self.k_proj(k), -1, bsz) | |
value_states = self._shape(self.v_proj(v), -1, bsz) | |
proj_shape = (bsz * self.num_heads, -1, self.head_dim) | |
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) | |
key_states = key_states.view(*proj_shape) | |
value_states = value_states.view(*proj_shape) | |
src_len = key_states.size(1) | |
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) | |
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): | |
raise ValueError( | |
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}" | |
) | |
if self.clamp_min_for_underflow: | |
attn_weights = torch.clamp(attn_weights, min=-50000) # Do not increase -50000, data type half has quite limited range | |
if self.clamp_max_for_overflow: | |
attn_weights = torch.clamp(attn_weights, max=50000) # Do not increase 50000, data type half has quite limited range | |
if attention_mask is not None: | |
# [bsz, src_len] | |
assert (attention_mask.dim() == 2) | |
attention_mask = attention_mask.unsqueeze(1).unsqueeze(1) | |
attention_mask = attention_mask.expand(bsz, 1, tgt_len, src_len) | |
attention_mask = attention_mask.masked_fill(attention_mask == 0, -9e15) | |
if attention_mask.size() != (bsz, 1, tgt_len, src_len): | |
raise ValueError( | |
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}" | |
) | |
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask | |
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) | |
attn_weights = nn.functional.softmax(attn_weights, dim=-1) | |
if return_attention: | |
# this operation is a bit akward, but it's required to | |
# make sure that attn_weights keeps its gradient. | |
# In order to do so, attn_weights have to reshaped | |
# twice and have to be reused in the following | |
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) | |
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) | |
else: | |
attn_weights_reshaped = None | |
attn_probs = F.dropout(attn_weights, p=self.dropout, training=self.training) | |
attn_output = torch.bmm(attn_probs, value_states) | |
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): | |
raise ValueError( | |
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}" | |
) | |
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) | |
attn_output = attn_output.transpose(1, 2) | |
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) | |
attn_output = self.out_proj(attn_output) | |
return attn_output, attn_weights | |
class AttentionMLP(nn.Module): | |
def __init__(self, q_dim, hidden_dim, dropout=0.1): | |
super(AttentionMLP, self).__init__() | |
self.hidden_dim = hidden_dim | |
self.activation_fn = nn.GELU() | |
self.fc1 = nn.Linear(q_dim, hidden_dim) | |
self.fc2 = nn.Linear(hidden_dim, q_dim) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, hidden_states): | |
hidden_states = self.fc1(hidden_states) | |
hidden_states = self.activation_fn(hidden_states) | |
hidden_states = self.fc2(hidden_states) | |
return hidden_states | |
class AttentionT2I(nn.Module): | |
def __init__(self, q_dim, k_dim, embed_dim, num_heads, hidden_dim=None, dropout=0.1, | |
drop_path=.0, init_values=1e-4, mode="i2t", use_layer_scale = False, | |
clamp_min_for_underflow = False, clamp_max_for_overflow = False): | |
""" | |
Inputs: | |
embed_dim - Dimensionality of input and attention feature vectors | |
hidden_dim - Dimensionality of hidden layer in feed-forward network | |
(usually 2-4x larger than embed_dim) | |
num_heads - Number of heads to use in the Multi-Head Attention block | |
dropout - Amount of dropout to apply in the feed-forward network | |
""" | |
super(AttentionT2I, self).__init__() | |
# pre_layer norm | |
self.layer_norm_q_1 = nn.LayerNorm(q_dim) | |
self.layer_norm_k_1 = nn.LayerNorm(k_dim) | |
self.attn = MultiHeadAttention(q_dim=q_dim, | |
k_dim=k_dim, | |
embed_dim=embed_dim, | |
num_heads=num_heads, | |
clamp_min_for_underflow=clamp_min_for_underflow, | |
clamp_max_for_overflow=clamp_max_for_overflow) | |
self.mode = mode | |
# add layer scale for training stability | |
self.use_layer_scale = use_layer_scale | |
if self.use_layer_scale: | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.gamma = nn.Parameter(init_values * torch.ones((q_dim)), requires_grad=True) | |
def forward(self, q0, q1, q2, q3, q4, k, v, attention_mask, dummy_arg=None): | |
qs = [] | |
for q_index, q in enumerate([q0, q1, q2, q3, q4]): | |
bs, _, h, w = q.shape | |
# (batch, seq_len, embed_size) | |
q = q.flatten(2).transpose(1, 2) | |
q = self.layer_norm_q_1(q) | |
k, v = self.layer_norm_k_1(k), self.layer_norm_k_1(v) | |
delta_q = self.attn(q, k, v, attention_mask=attention_mask)[0] | |
if self.use_layer_scale: | |
q = q + self.drop_path(self.gamma * delta_q) | |
else: | |
q = q + delta_q | |
q = q.transpose(1, 2).contiguous().view(bs, -1, h, w) | |
qs.append(q) | |
return qs[0], qs[1], qs[2], qs[3], qs[4] | |